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FOREWORD 

C. W. Roberson 

Physical Science & Technology Division 
Office of Naval Research 

Arlington, VA 22217 

The Princeton workshop is the fifth in a series of workshops on Nonneutral Plasma 
Physics. Previous workshops were in Washington D.C. (1988), [1] Irvine, CA (1992), 
Berkeley, CA (1994), [2] and Boulder, CO (1997). This series of workshops started as a 
result of a five-year Accelerated Research Initiative by the Office of Naval Research. 
The Plasma Science Committee of the National Academy of Sciences was in the early 
stages of formation at that time. We coordinated this Initiative with the PSC activities 
by accepting an offer to hold the meeting at the Academy and inviting a number of 
sponsors from other funding agencies. 

The first meeting had one day devoted to nonneutral plasmas in traps and the 
second day to radiation sources and accelerators. In addition to the proceedings, one of 
the participants expanded his paper into a book.[3] Questions and answers were tape 
recorded and published in the proceedings. This provides some interesting insights into 
the motivations of the research. The University of California at San Diego (UCSD) 
group is primarily interested in transport, and the group at the National Institute of 
Standards and Technology (NIST) in trapping and laser cooling ions for atomic clocks. 
The approach was quite different, but the two groups found common ground in single 
component plasmas. Everyone was interested in working on a system in which precise 
experiments and theory could be compared. These single-component plasmas in traps 
provided the simplicity from the plasma point of view and the complexity from the 
particle point of view to make them interesting to both communities. 

The Berkeley workshop in 1994 focused on traps. Single component plasmas in 
traps are sometimes referred to as microplasmas, since the density and size are limited 
by space-charge (self field) effects. There has been steady progress in the technology- 
intensive areas of accelerators and coherent free electron radiation sources. However it 
is the developments in traps, laser cooling of ions and the unique transport properties of 
single component plasmas that have led to the remarkable results of recent years. 

At the Berkeley meeting, all experiments funded after the first workshop were 
operational and many new efforts were emerging. The UCSD group had their ion trap 
with the Laser Induced Fluorescence measurements of density and temperature 
operating. They had invented the "rotating wall" and were confining ions for weeks. 
Some unique fluid dynamics experiments with electrons were in progress, including the 
discovery of "vortex crystals". Positron plasmas in traps were being used to carry out 
electron-positron beam plasma experiments and as well as experiments on the 
interactions of positrons with atoms and molecules. 
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Highly deformed asymmetric equilibria were under investigation at U. C. 
Berkeley as well as a re-examination of Debye shielding. The Princeton Plasma Physics 
Laboratory (PPPL) was exploring the possibility of a pressure standard based on 
electron-neutral collisions in the Malmberg-Penning trap. They were also analyzing the 
dynamics of intense beams in a periodic focusing field. NIST had their new ion trap in 
operation. They were trapping 105 ions and looking for crystalline order with Bragg 
scattering. 

A remarkable example of cross-fertilizations came out of this meeting. An 
outstanding problem on the path to a Penning trap ion clock was controlling the 
rotational motion of the ion cloud. The solution, which was suggested during the panel 
discussion, was UCSD's rotating wall. A number of other new directions emerged at 
this meeting. There was a Penning fusion experiment from Los Alamos presented, and 
a dusty plasma experiment from U. Colorado. The Pacific Northwest Laboratory was 
looking at space-charge effects in cyclotron mass spectrometry. A number of computer 
simulations were in progress. There was an increased emphasis on One-Component 
Plasma theory. A single-component plasma bibliography was included in the 
proceedings. 

The Princeton workshop is best characterized by the word diversity. There were 
about 100 participants, half of which could be considered "young investigators". There 
was a much stronger representation from Japan and Europe than at previous workshops. 

The first talk was on quantum computing with trapped ions. Quantum 
computing is a rapidly growing research area at the interface of physics and computing. 
The NIST group has been using laser-cooled trapped ions as an approach to this 
problem. 

The activity in antimatter has increased dramatically since the Berkeley and 
Boulder workshops. There are now three groups (US, Europe and Japan) doing 
antiproton or anti-hydrogen experiments. There were reports from Harvard, CERN and 
the University of Tokyo on this work. Antihydrogen experiments require making 
positron traps, anti-proton traps, neutral plasma traps and traps for antihydrogen. This 
work involves particle physics, atomic physics and plasmas physics, and so is a kind of 
physics triple point with vastly different length scales. The next few years should be an 
exciting time for these experiments. 

The positron plasma trap work has developed significantly, with ongoing work 
at UCSD, and Harvard. The 0.5 megavolt energy spread from radio active sources can 
be reduced to milliVolts by a combination of moderators and traps. New approaches to 
bright positron trap beam sources are being explored. A number of potential 
applications were discussed. NIST is exploring sympathetic cooling of positrons with 
laser cooled ions. This approach has the possibility of reaching positron temperatures of 
10 milliKelvin. 

The work on 3D ion crystals and 2D "vortex crystals" has matured and 
stimulated interest in the physics community. [4] Laser-cooled, phase-locked, real space 
imaging of trapped ions at NIST has led to some remarkable results. In addition to the 
cubic (bcc) lattice,[5] they can create an ordered rotating disk of ions.[6] Such disks 
offer a possible 2D alternative to quantum computing with linear arrays of trapped ions. 
Lawrence   Livermore   National   Laboratory   reported   on   an   experiment   which 
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demonstrated sympathetic laser cooling of Xe44-1" in a trap. These results open the 
possibility of crystalline arrays of highly charged ions. 

The UCSD ion experiment was designed to carry out detailed experiments on 
collisional transport in plasmas using Laser Induced Fluorescence diagnostics. They 
have set a new standard when it comes to experiments on the fundamental processes of 
transport in plasmas. This work has been coupled with an active theory effort that has 
provided guidance and explanations of this and other work. [7] They reported on cross- 
magnetic-field heat transport, building on previous measurements of test particle 
transport and viscous transport. In all these experiments they find that the transport is 
dominated by long-range "guiding center" collisions. In the recent experiment the 
thermal diffusivity is independent of magnetic field strength and plasma density and 
more than 100 times greater than classical diffusivity. 

A wide range of other trap experiments were reported at Princeton. Asymmetry- 
induced transport continues to be an active area of research, with the challenge to 
conventional wisdom coming from Occidental College. The nonneutral experiment at 
PPPL has shown that electron-neutral collisions affect the diocotron mode dynamics. 
They find the mode amplitude sensitive to gas pressure down to 5 x 10"10 Torr. 
Considerable theoretical and experimental effort (Cal Tech, UCSD) indicates the 
coupling of the "rotating wall" to the plasma is through the Trivelpiece-Gould modes. 
The U. C. Berkeley group did an interesting experiment on the autoresonant excitation 
of diocotron waves and is using a photocathode trap to study vortex merger. Brigham 
Young University is active in soliton-like nonlinear waves in traps and computer 
simulation of nonneutral plasmas in traps. Experiments at the University of Colorado 
are using an annular Malmberg-Penning trap to study transport when there are banana- 
like particle drift orbits. 

In addition to the Penning Fusion Experiment from Los Alamos National 
Laboratory, an additional nonneutral plasma approach to fusion was presented at this 
workshop. The University of Tokyo is exploring approaches to high beta plasmas using 
an electron ring, in a concept similar to the Field Reversed Configuration. In accelerator 
related work there was a PPPL talk on the propagation of intense nonneutral beams in 
strong focusing fields. The halo formed by high current beams as they approach 
equilibrium is similar to the halo formed in traps as equilibrium is approached. 

At the Boulder workshop we invited scientist from related fields to give 
presentations. For example, there was a talk from the Fermi National Accelerator 
Laboratory on using plasma wave echoes to diagnose ion storage rings. At this meeting 
there was a talk from the Jefferson Lab on a high average power free electron laser 
(FEL). Average power is important in industrial applications concerned with the cost 
per photon. Although high average power has been a strong motivation in the 
development of free electron lasers, no one had broken the "kilowatt barrier" at any 
wavelength until the Jefferson Lab results this year (1.7 kW at 5 microns). The 
potential of the FEL to be tunable and to operate at any wavelength from the microwave 
to x-rays is often limited by the mirrors, especially in the low-gain regime. There is a 
great deal of research activity at present to design and construct a fourth generation light 
source based on a single pass x-ray FEL. This FEL would operate in the exponential 
gain regime where the dispersion relation has the same form as the two-stream 
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instability.[8] Although mirrors may not be a problem, the electron beam quality 
requirements are a challenge. 

The workshop Chair and PPPL staff did an outstanding job of organizing the 
meeting, choosing an interesting setting and arranging for delightful weather. 

Since the beginning of these workshops there has been a great deal of interest by 
the plasma physics community and appreciation of the high quality of the work. There 
have been 5 plenary session talks featuring nonneutral plasmas at the APS Plasma 
Physics Division meetings since the 1988 Washington meeting. Two of these talks were 
given by Maxwell prize recipients. This program was held up as a role model in the 
National Research Council's report on plasma science.[9] 

The internal logic of the science drives much of the research, always working 
towards simplicity to achieve predictability. We have chosen single-component 
nonneutral plasmas in traps as a focus. The excellent confinement properties and the 
fact that the plasma does not recombine to form a neutral gas means that the free energy 
in the system can be minimized. In systems such as beams where the free energy is 
dominant, predictability can be achieved by limiting the number of particles. However 
technology requirements usually drive us in the opposite direction, towards more 
particles and more free energy. For intense beams, tailoring of the beam distribution 
function becomes critical for efficient transport. The enabling science that is coming out 
of this work is pointing the way to new applications and extending the frontiers of 
knowledge. 

The rigidly rotating pure electron plasma in a Malmberg-Penning trap has 
become the "hydrogen atom" of plasma physics. However, the diversity of the meeting 
shows that nonneutral plasma physics is a truly multi-disciplinary field. 
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SECTION 1 

ANTIMATTER PLASMAS 



Progress in Creating Low-energy 
Positron Plasmas and Beams 

C. M. Surko, S. J. Gilbert and R. G. Greaves* 

Physics Department, University of California 
San Diego, LaJolla, CA 92093-0319 

Abstract. A summary is presented of recent research to create positron plasmas in new 
regimes of density, temperature, and particle number. The operation of a new, compact 
positron accumulator is discussed. It has a number of improvements including enhanced 
vacuum capabilities and an easily modified electrode structure. Using a 90 mCi Na source 
and neon moderator, a plasma of 3 x 10s positrons, with a diameter of 6 mm (FWHM) and a 
density of 2 x 107cm"3, has been accumulated in 8 minutes. This is a factor of 50% more 
positrons and an order of magnitude increase in plasma density over the performance of the 
previous accumulator. Plans for a separate, high magnetic field (i.e., 5 Tesla), low-temperature 
(< 10 Kelvin) trap are described. This trap is expected to permit the creation and long-term 
storage of cryogenic plasmas with more than an order of magnitude larger particle number and 
more than two orders of magnitude in plasma density. A method is described that uses 
positron accumulation techniques to create a cold, bright positron beam (e.g., < 20 meV 
FWHM), tunable from ~ 0.1 eV upward. Results are described of studies of positron scattering 
from atoms and molecules in a new range of energies (e.g., < 1 eV) using this cold positron 
beam. Other applications of trapped cold positron plasmas and beams are briefly discussed. 

INTRODUCTION 

Once the province of high-energy physics, antiparticles such as the antiproton and the 
positron are now routinely used in a much wider range of applications. In the case of 
positrons, these uses include the study of atomic and molecular physics, antihydrogen 
formation, plasma physics, and the characterization of solids and solid surfaces [1,2]. 
Further progress in many of these areas hinges on the ability to manipulate and cool 
large collections of antiparticles, relying in large part on nonneutral plasma techniques. 

One benchmark for handling antimatter is the lifetime of antiparticles in the presence 
of matter. This time is of the order of a few nanoseconds for either positrons or 
antiprotons in solids or gases at atmospheric pressure. This fact leads immediately to 
the conclusion that, if antimatter is to be confined, accumulated and cooled, it must be 
done in a vacuum environment. Over the past decade, we have developed methods to 
accumulate large numbers of positrons [2,3], by exploiting nonneutral plasma 
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techniques developed for electron plasmas [4]. Plasmas of greater than 108 particles 
and confinement times of many minutes to hours are now routine [2]. 

Using the positron accumulator, we have recently developed a new technique to create 
a state-of-the-art cold positron beam with an energy spread as small as 18 meV 
(FWHM), tunable from 0.1 eV upwards [5,6]. Recently, we used this technique to 
make the first measurements of the cross section for excitation of vibrational modes in 
a molecule (the asymmetric stretch mode in CF4, Ae = 0.16 eV, measured for positron 
energies from 0.2 to 1 eV) [7]. We also measured the differential cross section for 
elastic scattering of positrons from atoms in the range of energies between 0.4 and 2 
eV [7]. These experiments are expected to provide important new information, such as 
understanding the role of virtual positronium states in positron interactions with matter 
and the mechanisms by which positrons bind to atoms and molecules. 

In this paper, we review recent progress in positron accumulation and the development 
and use of the cold positron beam. We also discuss briefly other applications. For a 
discussion of the application of cold positron beams to condensed matter and surface 
physics and positron ionization mass spectrometry, the reader is referred to a 
complementary paper elsewhere in this volume by [8]. 

BUFFER-GAS TRAPPING AND A NEW ACCUMULATOR 

The principle of the buffer-gas trapping scheme is illustrated schematically in Fig. 1. 
Inelastic collisions of positrons with N2 molecules are used to trap positrons in a 
specially designed Penning-Malmberg trap [2,3,9]. Positrons from the source are 
slowed to a few electron Volts using a neon rare-gas "moderator," which consists of 
solid neon condensed on a metal surface at 7 Kelvin. There is an applied magnetic 
field of ~ 0.1 - 0.15 T in the z direction. The positrons are injected into the 
accumulator at energies ~ 30 eV. The accumulator has three "stages," I, II, and III, 
each with successively lower gas pressure and electrostatic potential. Following a 
series of inelastic collisions ("A", "B," and "C" in Fig. 1), the positrons are trapped in 
stage III where the pressure is lowest. The positrons cool to room temperature by 
collisions with theN2 in ~ 1 s. The positron lifetime in the third stage is > 40 s, limited 
by annihilation on the N2 gas. Using this technique, we are able to accumulate > 108 

e+ in a few minutes from a 90 mCi 2Na source. The lifetime of the plasma with the 
buffer gas removed ranges from tens of minutes to hours, depending upon the quality 
of the vacuum. 

The design of the original positron accumulator (circa 1985) is shown in the upper part 
of Fig. 2. This design used a split magnet surrounding the accumulator electrodes to 
achieve the required differential pumping. One focus of our work in the last two years 
has been the completion of a new positron accumulator. A key feature of the new 
accumulator is elimination of the separate pumping port for the second stage. 



FIGURE 1. Schematic diagram of the three-stage positron accumulator, showing the electrode 
structure (above), which is used to create regions with different pressures of nitrogen buffer gas 
by differential pumping. The electrostatic potential profile along the direction of the magnetic 
field is also shown (below). 

A new electrode structure with a much improved pressure profile was designed using a 
state-of-the-art molecular flow simulation program, provided by Dr. Tim Bartel of 
Sandia National Laboratory [10]. The calculated pressure profile along the magnetic 
axis of the trap is shown in Fig. 3. The new design is a significant improvement in 
terms of pressure differential and uniformity of pressure in stages II and III. The size 
of the electrodes and magnet were reduced, thereby reducing complexity and cost. 
The electrodes are made from gold-plated aluminum. They are designed for close fit 
to the vacuum chamber, thereby facilitating alignment. The new vessel is a ultra-high 
vacuum (UHV) system, bakeable to 130 °C, with a base pressure of < 10"10 torr. 

Shown in Fig. 4 are the radial profiles of the positrons in the filling beam from the 
source/moderator and in stages II and III of the trap. The diameter of the trapped 
plasma in stage III is 6 mm (FWHM), as compared with 1.5 cm in the previous design. 
Shown in Fig. 5(a) is the filling of the trap using a 10 Volt potential well in stage III. 
Note the super-linear filling rate as a function of time. This is evidence that we are 
entering a regime in which the positron density is large enough that positrons are 
trapped in stage III by scattering from positrons previously trapped in this stage. This 
is consistent with estimates for Coulomb scattering during the time (~ 10 ms) that the 
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FIGURE 2. Shown to scale are the designs of the original (above) and the new positron 
accumulator (below). The new design provides a true UHV-quality vacuum and the ability to 
easily modify the electrode structure. 
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FIGURE 3. Calculated pressure profile as a function of distance along the magnetic axis in the 
new positron accumulator. This design improves the maximum pressure differential between 
each stage by an order of magnitude. 



particles spend in stage II before becoming trapped in stage III. The maximum 
positron number in Fig. 5(a) is limited by the space charge of the positrons in stage III. 
Figure 5(b) shows data taken when the stage-Ill potential well was lowered from 10 to 
15 Volts during filling. The maximum number trapped is just under 3 x 108. Note that 
the filling has not yet saturated for an 8 minute accumulation. 

5 mm 

FIGURE 4. Radial profiles of the positron filling beam (left); the plasma accumulated in stage 
II after a 0.5 ms fill (center); and the plasma in stage III after a 10 s fill. 
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FIGURE 5. Positron filling of the accumulator: (a) filling with a 10 Volt potential well in 
stage III. The increase in filling rate appears to be due to scattering from positrons already in 
stage III; (b) filling curve taken when the well depth is lowered from 10 to 15 V during the fill. 

A UHV environment is required for many applications, such as antihydrogen 
formation or studies of positron annihilation with test molecules. We have been able 
to accomplish this in the new buffer-gas trap by rapidly pumping out the gas after 
positron filling. As shown in Fig. 6, we are able to cycle stage III from an operating 
pressure of 3 x 10"7 torr to < 1 x 10"9 torr in a few seconds. This will also be useful in 
shuttling the positrons from positron accumulator into a separate UHV storage and 
experimentation trap (described below) through a fast pulsed valve. 



Valve open 

FIGURE 6.  The pressure in the third stage of the new accumulator can be decreased by three 
orders of magnitude in 10 seconds. 

A HIGH-FIELD LOW-TEMPERATURE TRAP [11] 

The buffer-gas trap is attractive for a range of applications because of the high 
trapping efficiency. However, as mentioned above, many of these applications require 
an ultra-high vacuum (UHV) environment, and a limitation of the technique is that the 
positrons are initially in a background of nitrogen gas at a pressure > 10"7 torr. As 
shown in Fig. 6, we can create a good vacuum in the trap rapidly by pumping out the 
buffer gas (e.g., in ~ 10 s) and then conduct the specific experiment of interest. 
However, this will interrupt the fill cycle. Thus, it is advantageous to combine the 
ability to pump down the accumulator rapidly with the ability to "stack" positron 
plasmas efficiently in a UHV environment. For this purpose, we are building an 
isolated UHV stage into which the positrons from the accumulator can be shuttled 
repetitively through a fast pulsed valve. In this way, we can isolate the efficient 
buffer-gas trap from the UHV stage. The proposed apparatus is shown in Fig. 7. 
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FIGURE 7. The UHV storage trap in relation to the three-stage positron accumulator. 



During positron accumulation, the UHV storage stage will be isolated from the 
positron trap by a fast valve. Then the buffer-gas feed will be switched off and the trap 
will be pumped rapidly to base pressure (i.e., -1x10" torr). The gate valve will 
then be opened for the brief time ( < 1 s) required to transfer the positrons to the 
storage trap and the cycle repeated. Long confinement times and low plasma 
temperatures will be achieved by applying a magnetic field of 5 T in this region. In 
the 5 T field, the cyclotron radiation time is ~ 0.2 sec. We plan to cool the walls to 10 
Kelvin, and so the plasma will cool radiatively to approximately the wall temperature. 
The cold walls should provide excellent vacuum (e.g., pressures < 10"u torr or better). 
The trap will have a "rotating wall" electrode for control of plasma density and 
confinement time [12]. Using this technique, we are likely to be able to achieve an 
"infinite" confinement time, as has been done in the case of electron plasmas. 

In Table I, the operation of the old positron accumulator is compared with that 
expected for the new accumulator and UHV storage trap. We assume a six- 
minute trapping cycle including one minute to pump out the buffer gas. Presently, the 
positron loading rates are ~ 3 xlO8 per cycle or 3 x 109 per hour. With modest 
improvements, we expect that it will be possible to increase the number of positrons by 
a factor of as much as five, to > 1 x 109 per cycle. These improvements include an 
increased source strength of 150 mCi and modest improvements in the source 
geometry, magnetic field, and vacuum system. With these modifications, positron 
accumulation rates of greater than 1 x 1010 positrons per hour are expected. With this 
filling rate and confinement times > 3 hours, the number of positrons accumulated will 
be limited by the space charge of the plasma. For example, an hour's accumulation of 
1 x 1010 positrons in a plasma 1 mm in radius by 10 cm long corresponds to a plasma 
density of > 1 x 1010cm"3 and a 1 kV space potential. 

TABLE I. Expected Performance of the UHV Storage Trap* 

Parameter Old Positron New Accumulator 
Accumulator and UHV Storage Tran 

Source strength (mCi) 70 95 
Positrons per cycle 2 x10s ~3xl08 

Cycles per hour n.a. 10 
Positrons per hour n.a. ~3xl09 

Density (cm"3) ~2xl06° >lxl01("' 
Base pressure (torr) 3 x IQ"10 < 1 x 10"" (cold) 

on current new-trap performance 
" One cycle in a 0.1 T magnetic field. 
4 One hour accumulation in a 5 T field. 



A COLD POSITRON BEAM AND 
APPLICATION TO ATOMIC PHYSICS 

While sources of cold electron beams are common, this is not true for positrons. 
Recently, we developed a method to create a state-of-the-art cold positron beam using 
trapped positron plasmas [6,7]. This technique can be used to increase the brightness 
of a positron or electron beam, and to create intense, short pulses of positrons with 
narrow energy spreads. The beam energy can be tuned over a wide range of energies, 
from -0.1 eV to tens of electron Volts. 

i positrons 
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FIGURE 8. Schematic diagram of the arrangement used to create a cold positron beam (above), 
and the retarding-potential curve and energy distribution (below). 

The experimental arrangement is illustrated in Fig. 8(a). Positrons are accumulated 
and cooled in a Penning-Malmberg trap. Then the potential of the bottom of the trap is 
raised, forcing the particles over a fixed-height potential barrier [energy Eo in Fig. 
8(a)], and this sets the energy of the beam. The spread in parallel energies of the beam 
can be as low as, or lower than, the temperature of the plasma in the potential well. 
However, care must be taken not to empty the trap too quickly, or space-charge 
effects will increase the energy spread of the beam. Shown in Fig. 8(b) are data for the 
energy resolution of a positron beam created using this technique. We have been able 
to operate the beam in both continuous and pulsed modes; the latter was accomplished 
by reducing the depth of the confining potential well in small steps. 

Two topics that could not be addressed previously due to the lack of suitable low- 
energy positron sources were study of the excitation of molecular vibrations by 
positrons and measurement of low-energy differential scattering cross sections.  We 
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have now been able to do both [7]. The experiments were done exploiting the fact that 
the cold positron beam is in a magnetic field. This is in contrast to contemporary 
electron scattering experiments which are typically done using electrostatic beams. 

The first measurements of the differential elastic scattering cross section for argon at 1 
eV positron energy are shown in Fig. 9(a). Comparison with theoretical predictions of 
McEachran, et al. and Duzba, et al. (solid and dotted curves, respectively, with no 
fitted parameters) [13,14] indicate excellent agreement. In the future, we hope to 
study elastic scattering in the important regime, ka ~ 1, where k is the momentum of 
the positron and a is the scattering length (in atomic units). In this limit, both the sign 
and magnitude of the s-wave scattering length, a, can be measured, and these 
quantities provide important information about positron-atom and positron-molecule 
bound states. 
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FIGURE 9. (a) differential elastic scattering cross section of positrons scattered from argon at 
1.0 eV; (b) the cross section (in atomic units) as a function of positron energy for excitation of 
the asymmetric stretch mode in CF4, which corresponds to an energy of 0.16 eV. Also shown 
is the cross section for electrons, taken from electron-swarm data. (See Ref. 7 for details.) 

We have also used the cold beam to make the first measurement of the vibrational 
excitation of a molecule (CF4) with positrons [7]. This was accomplished by locating 
the scattering event in a magnetic field of 1000 Gauss and analyzing the spectrum of 
parallel energies of the scattered beam in a smaller magnetic field. In this case, the 
(nominally parallel-energy) retarding-potential analyzer measures the total positron 
energy and therefore measures the energy loss due to scattering. Data for CF4 are 
shown in Fig. 9(b). The asymmetric stretch mode that is excited has an energy of 0.16 
eV. This is an absolute measurement and extends down to positron beam energies of 
0.2 eV, which is possible only because of the excellent energy resolution of the cold 
positron beam. 

CONCLUDING REMARKS 

We are continuing to advance the technology of accumulating and cooling positrons. 
The new UHV trap should provide capabilities for a range of experiments, furnishing a 
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reservoir of cold, dense positron plasma in a high-quality vacuum environment that 
can be used as required for the particular experiment at hand. It should be well suited, 
for example, as a positron source for antihydrogen production. These efforts have now 
been extended to the creation of a state-of-the-art bright, pulsed positron beam, tunable 
over a wide range in energies. The new UHV trap and cold walls should be well 
suited for the creation of a new generation of positron beams [e.g., having an energy 
spread as low as 1 meV (FWHM)]. 

Driven by advances in this technology, we continue to use these antimatter beams and 
plasmas to study a range of scientific problems ~ from the electron-beam positron- 
plasma instability and modeling of astrophysical processes to antihydrogen formation 
and the interaction of low energy positrons with atoms and molecules. In particular, 
the cold positron beam appears to be able to address many new problems in these 
areas. 
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Abstract. A positron accumulator based on a modified Penning-Malmberg trap has been 
constructed and undergone preliminary testing prior to being shipped to CERN in Geneva 
where it will be a part of an experiment to synthesize low-energy antihydrogen. It utilises 
nitrogen buffer gas to cool and trap a continuous beam of positrons emanating from a Na 
radioactive source. A solid neon moderator slows the positrons from the source down to 
epithermal energies of a few eV before being injected into the trap. It is estimated that around 
10 8 positrons can be trapped and cooled to ambient temperature within 5 minutes in this 
scheme using a 10 mCi source. 

INTRODUCTION 

In order to produce low energy antihydrogen via recombination it is necessary to 
have copious amounts of cold positrons available. To attain this a positron accumulator 
based on the design of the Surko Group at the University of California San Diego (1-3) 
has been constructed and undergone preliminary testing at University College London 
(UCL) before being shipped to CERN in Geneva to be a part of the ATHENA 
(AnTiHydrogEN Apparatus) experiment (4). The accumulator is an ideal source of 
positrons in this case as it is capable of supplying large quantities (>108) of positrons 
in short well defined bursts, with a short cycle time, in the order of 5 minutes. 

POSITRON MODERATION 

The continuous beam of slow positrons injected into the accumulator is generated by 
moderating ß+ particles from a radioactive source and guiding them into the trapping 

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al. 
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FIGURE 1. The source-moderator setup with the copper cone and the thermal shield. 

region using a magnetic field. The radioactive source used in our set-up is an 
encapsulated 9 mCi 22Na y3+-radioactive source from Dupont Pharma. The source is 
mounted on an Elkonite rod fitted to a APD Displex 204SLB cryogenic coldhead 
(Fig.l) capable of reaching 5.5 K. Elkonite is a Tungsten-Copper alloy that possesses a 
high thermal conductivity while also providing excellent shielding for the gamma 
radiation from the source. The rod itself is split into two sections separated by a 
sapphire disk allowing a potential to be applied to the source/moderator. On top of the 
source capsule there is a cone shaped copper extension. A gold plated copper thermal 
radiation shield, held at 77 K, encloses the entire coldfinger. 

The source end is pumped out by a magnetically levitated turbomolecular pump, 
which is roughed out by a scroll pump. This maintains a base pressure of 1 x 10 ~9 

mbar in the source end while also keeping the vacuum system oil free. This is 
important since positrons have been shown to readily attach themselves to large 
hydrocarbon molecules (5, 6) where they subsequently annihilate causing the storage 
time of the positrons in the trap to be much reduced. Finally the pumps allow for 
accurate control of the pressure in the source-end during deposition of the neon 
moderator. This is accomplished by letting in neon gas at a pressure of 5 x 10 ~* mbar 
for an hour or more depending on the desired thickness of the moderator. 

The fast/?+ particles from the source are emitted over a continuous range of energies 
up to a cut-off energy of 545 keV. These are moderated using a layer of a condensed 
noble gas, in this case neon, condensed onto the source cone arrangement. This type of 
moderation can be far more efficient although more complex in operation, due to the 
cooling requirements, than more conventional metal foil moderators. However, the 
overall attainable efficiency of this type of moderator has been shown to depend on the 
geometry of the source-moderator system. Thus an increase of a factor of 5 in the 
moderation efficiencies have been reported for a conical geometry compared to a flat 
geometry (7). This is the reason for the copper cone on top of the source. 
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FIGURE 2. The trapping scheme showing the electrodes with the potentials and gas pressures in the 
different parts of the trap. 

Due to the method of final slow down and emission from rare gas solid moderators 
the positrons emitted from them have a wider energy spread than that typical for 
traditional metal moderators. This broader energy spectrum has the effect of a 
subsequent reduction in the trapping efficiency of the final stage, where the trapping 
electrode voltages are tuned to trap certain positron energies more efficiently. Thus a 
reduction in the region of 25 % was noted by Greaves and Surko (8). However, this is 
more than compensated for by the order of magnitude improvement in the initial 
moderation step. 

After moderation the positrons are transported through the source chamber by a 
series of 3 "pancake" coils. These coils maintain a field of around 250 Gauss and 
introduce a 2 cm kink in the positron path, raising the beamline to remove the source 
from being in a direct line of sight with the remainder of the apparatus. Upon exiting 
the source chamber the positrons are magnetically guided along a small diameter 
transfer tube by a small (300 Gauss) solenoid before entering the trapping and 
accumulation region. This transfer tube is necessary to ensure that the solid neon 
moderator remains unaffected by the presence of the buffer gas in the accumulation 
region. 

TRAPPING 

The second stage of the vacuum apparatus consists of a pair of pumping boxes 
connected together by a smooth bore cylindrical chamber. The two pumping boxes are 
each fitted with a 1200 1/s cryopump. These were chosen not only to obtain UHV 
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conditions, but also for their pumping speed, necessary for the rapid removal of 
nitrogen gas from the system. This is important both for minimising annihilation losses 
and for keeping the accumulation cycle time down to a minimum. Again, as mentioned 
earlier, the vacuum system is kept oil-free to avoid positrons being trapped at 
hydrocarbon molecules. The base pressure of the main trapping region is 1 x 10 ~10 

mbar. 

The smooth bore cylindrical chamber is situated within a 0.15 T magnet and contains 
an electrode array. This consists of a set of eight separate gold-plated aluminium 
electrodes with an appropriate potential applied will confine the positrons in the axial 
direction after the initial trapping (Fig.2). The 0.15 T axial magnetic field supplies the 
radial confinement and combined with the electric potentials this constitutes our 
Penning-Malmberg trap. 

The physical dimensions of the electrodes are designed to allow a pressure gradient 
to be developed along their length. Nitrogen gas can be introduced midway along 
electrode II and is pumped out at either end or through a set of three vents located at 
the end of the same electrode. These vents can be manually adjusted by covering them 
to various degrees with a sleeve actuated by a linear drive. Thus the pressure along the 
array can be adjusted to obtain the optimal trapping of the positrons. Typically a 
pressure in the region of 10"3 mbar is sufficient within electrode II, falling to 10"7 mbar 
within the final stages. A steadily falling trapping potential is also applied along the 
array in order to accumulate the trapped positrons in the region of electrodes V and VI. 

The positrons are trapped and cooled within the array via a buffer gas method. The 
nitrogen gas pressure is tuned such that on average, a positron entering from the source 
region will experience one inelastic collision with a nitrogen molecule whilst 
traversing electrode II. Now confined and unable to escape the array a second collision 
typically occurs within a millisecond further confining the positron to between 
electrodes III and VI, typically a third collision after some 10ms will then finally 
restrict the positron to electrodes V and VI. 

As stated earlier the electrode potentials are critical to the effective performance of 
this trapping system. Positrons initially entering with some 31-35 eV of kinetic energy 
pass into the array over the gate electrode (I) which has a potential of approximately 30 
V applied. The second electrode is then set to 24 V, corresponding to the positron 
having some 7-11 eV of kinetic energy. This range is chosen as it corresponds to the 
so-called "trapping gap" (1), between the first available nitrogen electronic transition 
at about 7 eV and 11 eV where positronium formation starts to become the dominant 
process. Similar considerations are taken with the voltage along the length of the array 
until the positron is eventually confined to the last stage. Here the gas pressure is much 
lower, reducing annihilation losses yet cooling the positrons to room temperature in 
less than 1 second by a mixture of excitation of nitrogen molecules and direct 
momentum transfer. The accumulation cycle continues until an equilibrium state is 
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FIGURE 3. The first results for slow positron energy spread obtained by applying a retarding potential 
in front of a channeltron detector. 

reached between further positron trapping and losses due to annihilations and plasma 
expansion. At this point we hope to have trapped in excess of 108 positrons, which 
have a lifetime of up to an hour after the buffer gas is pumped out. After the buffer gas 
is switched off, the base pressure of this part of the vacuum system should be reached 
in roughly 10 seconds due to the high pumping speed of the cryopumps. 

PROGRESS 

The positron accumulator is currently being reassembled at CERN following the 
transfer from its initial UCL development site. Prior to this, good progress was being 
made with the source end moderation where initial moderation/transport tests have 
been performed. 

A preliminary study of moderator growth was conducted using a channeltron and a 
plastic scintillator detector in coincidence in order to ascertain the moderator 
efficiencies for different moderator thicknesses etc. These detectors were placed at the 
entrance to the main vacuum system. Using this method we have been able to detect 
more than 6 x 105 e+ s"\ giving a moderator efficiency of 0.18 % based on a source 
strength of 9 mCi at the time of the measurement. However, these were only the first 
preliminary measurements and there were strong indications that higher positron yields 
can be achieved. Once reconstructed further rigorous tests will be conducted to 
ascertain and maximise both the moderator and transport efficiency. A preliminary 
study of the energy spectrum of the slow positrons, has also been conducted (Fig.3), 
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showing at FWHM of -2.5 eV. Both this and the gross positron yield are of the same 
order of magnitude as seen in similar experiments. 

The trapping and accumulation region was also assembled and vacuum tested. An 
attempt was then made to trap electrons in the system. During these test problems with 
the radial magnetic field of the main magnet was discovered which led to trapping 
times of only 10 s for electrons. These magnet problems have resulted in several 
months delay while the magnet was returned to the supplier for repairs. These repairs 
have now been completed and the magnet has been installed at CERN for further tests. 
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Abstract. 
Low-energy positron beams are extensively employed in various areas of science 

and technology such as surface analysis, atomic physics, plasma physics and mass 
spectrometry. Recent advances in positron trapping and in manipulating nonneutral 
plasmas present the opportunity for creating a new generation of bright, ultracold 
positron beams with parameters that far exceed those currently available. Current 
applications of low-energy positron beams are described, and the potential for the 
development of advanced trap-based positron beams is discussed. 

I    INTRODUCTION 

Over the past several decades, a variety of powerful analytical tools for materi- 
als and surface analysis based on positron beams have been developed [1]. These 
techniques are generally implemented using steady state and pulsed beams derived 
from radioactive sources. Recent developments in nonneutral plasma and positron 
trapping techniques have now created the opportunity for producing a new gen- 
eration of positron beams based on the extraction of positrons accumulated in a 
Penning trap. These unique techniques have never before been applied to beam 
formation, and as described in this paper, they offer the potential to create bright, 
ultracold, pulsed positron beams with parameters that far exceed current positron 
beam technology. 

This paper is organized as follows. In Sec. II, we describe low-energy positron 
beams and their current uses for surface analysis and other applications. In Sec. 
Ill, we briefly review a high-efficiency positron trapping technique and the forma- 
tion of positron beams using traps. We also discuss important recent advances 
in techniques to manipulate nonneutral plasmas and describe how they might be 
applied to the creation of state-of-the-art cold, bright positron beams. Section IV 
summarizes the paper. 
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II    LOW-ENERGY POSITRON TECHNOLOGY 

A    Low-energy positron beams 

Positrons beams are typically derived from radioactive sources and moderated to 
low energies using single crystal or polycrystallinc metals or insulators [2]. Positron 
beams are produced from these sources by accelerating, guiding, bunching and fo- 
cusing the positrons using various combinations of electric and magnetic fields. The 
resultant low-energy positron beams have been extensively applied to the analysis 
of solids and surfaces [1], and they have also been employed for several decades in 
basic atomic physics experiments [3]. 

B    Brightness enhancement and microbeams 

For many applications, positron beams with diameters ~ 1 micron or less (mi- 
crobeams) are required. Such beams can be rastered across a sample under study 
to obtain spatially-resolved information. When combined with variable energy 
positron beams that can be implanted to varying depths, a three-dimensional scan 
of the sample can be obtained. Since radioactive positron sources are typically sev- 
eral mm in diameter, microbeams must be obtained by focusing using electrostatic 
or magnetic lenses [2]. 

A fundamental limitation on focusing is imposed by Liouville's theorem, which 
states that the phase space volume occupied by a swarm of particles moving in a 
conservative field cannot be reduced. For a particle beam, the phase space volume 
is represented by the product fi = d2AE±, where d is the beam diameter and Ex. is 
the perpendicular energy spread. The minimum diameter d of a focussed beam of 
initial diameter do accelerated to an energy E is given by d m d0/aJE±/E, where 
a is the convergence angle. For positron beams, typical parameters are a ~ 0.2, 
E± ~ 0.25 eV (from tungsten moderators) and E ~ 2.5 kV, giving d RJ d0/2Q. 
Since do ~ 3 mm for typical radioactive sources, the minimum size for a focussed 
positron beam would be ~ 150/xm, which is too large for many applications. 

This limitation has been partially overcome by the technique of remodcration 
brightness enhancement [4]. Positrons are implanted into a moderator with a well- 
defined energy. They rapidly thermalize in the moderator and a fraction of them 
(~ 30%) are reemitted with a narrow energy spread, which allows them to be 
further focused in subsequent stages of remoderation. Typically reductions by 
about a factor of 10-20 in beam diameter are possible. This process is typically 
repeated 3 or 4 times to obtain microbeams. Unfortunately the 70% loss in each 
stage results in an overall reduction of about two orders of magnitude in beam 
strength. As described in Sec. Ill B, positron traps have the potential for achieving 
brightness enhancement using much more efficient processes. 
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C    Surface analysis using positron beams 

An important application of positron beams is the wide variety of techniques 
that have been developed for the analysis of solids and surfaces [1]. By varying 
the energy of the incident positrons over the range from a few kV to >100 kV, 
positrons can be used for depth profiling. 

Positron reemission Microscopy (PRM)—Positrons implanted near the sur- 
face of a solid can thermalize and be reemitted and analyzed to yield types of con- 
trast that are not available with conventional scanning electron microscopy. The 
technique can distinguish non-uniform film thickness, varying crystal orientations, 
differences in bulk defect density, concentrations of absorbed molecules, and con- 
taminant layers [5]. 

Positron annihilation induced Auger electron spectroscopy (PAES)— 
This technique is analogous to electron induced Auger electron spectroscopy (AES), 
except that the core hole, which leads to the ejection of the Auger electron, is cre- 
ated by positron annihilation rather than electron impact [6]. For this technique, 
positrons are injected at low energy into the surface to be analyzed. The ejected 
electrons are analyzed in the usual way, but the measurement is substantially sim- 
plified by the absence of background high-energy secondary electrons. 

Low-Energy Positron Diffraction (LEPD)—A crystalline sample is bom- 
barded with low-energy (0-300 eV) monoenergetic positrons. Backscattered 
positrons diffract producing spots on a fluorescent screen. The positions of the 
spots are a measure of the sample's diffraction sites. This information can be used 
to determine the crystal structure of a substrate or to analyze adsorbed layers. 

Positron Induced Ion Desorption Spectroscopy (PUDS)—Time-of-flight 
is used to measure the mass spectrum of ions desorbed from surfaces by the injection 
of positron pulses [7]. The ion desorption rate due to positron injection is much 
larger than that for photodesorption. 

Positron Annihilation Lifetime Spectroscopy (PALS)—Positrons injected 
into surfaces can be trapped and subsequently annihilate in vacancy-type defects. 
Measurement of the positron lifetime yields information about the defects. This 
technique has been extensively applied to the study of bulk properties of solids 
[1]. Applications include characterizing the properties of semiconductors, such as 
ion-implanted silicon to study, for example, stress voiding and electromigration, 
and voids in polymers, which determine such properties as impact strength, gas 
permeability and aging characteristics. Another important topic is the development 
of low-fc dielectrics in microelectronic fabrication. 

Variable Energy Positron Lifetime Spectroscopy (VEPLS)—The power 
of the PALS technique can be substantially enhanced using a variable energy beam 
which enables positrons to be implanted to varying depths so that a depth profile of 
void size and concentration can be obtained. When implemented using a scanning 
microbeam, three-dimensional information can be obtained. The technique requires 
pulse widths of the order of typical annihilation times in materials (~100 ps). 
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Positron Annihilation Spectroscopy (PAS)—This technique measures the 
Doppler-broadening of the 511 keV gamma-ray line resulting from the annihilation 
of positrons implanted into solids. The required information is contained in the 
gamma-ray lineshape. PAS can provide the same type of information about defects 
as PALS and VEPLS. 

D    Positron Ionization Mass Spectrometry 

Positron beams have the potential for use in a novel ion source for mass spectrom- 
etry. The formation of positive ions by positron annihilation was first demonstrated 
by Passner et al. in a positron trap [8]. The experiment involved introducing sam- 
ple gases into the trap during positron filling. The positive ions were trapped 
by the same potentials as the positrons, and mass spectra were obtained using 
a simple time-of-flight technique. They reported fragmentation patterns for hy- 
drocarbons that were similar to those obtained using electron impact ionization. 
Subsequently, Hulett and coworkers investigated ionization by positronium forma- 
tion [9], which occurs for positrons with energies above the positronium formation 
threshold Eps = Ej — 6.8 eV, where Ei is the ionization energy of the molecule. 
They found that, for energies slightly above Eps, very little fragmentation of hydro- 
carbon molecule occurred, but as the positron energy is increased further, molecular 
fragmentation increased in a controlled manner. 

This effect may be useful in the mass spectroscopic analysis of complex 
biomolecules of interest in biotechnology and molecular medicine, such as pep- 
tides. One possible configuration for implementing this technique using trap-based 
positron beams consists of a positron trap connected to an ion trap as shown in 
Fig. 1. By allowing positrons to pass through the ion trap, a recirculating positron 
beam with well-defined (and potentially very narrow) energy spread can be cre- 
ated in the ion trap. The positron energy in the ion trap can be tuned by varying 
the depth of the well. Because the beam recirculates, the positrons make multiple 
passes through the ion trap leading to efficient use of the positrons. Since the ions 
are confined in a Penning trap, precision mass spectroscopy can be implemented 
using ion cyclotron resonance. 

E    Other uses of positron beams 

Positron beams are also used for a variety of basic research studies. These include 
atomic physics [3,10], plasma physics [11], and antihydrogen formation [12]. For 
many of these applications, the trap-based beams will provide a powerful tool which 
will provide new capabilities, such as the ability to explore important low-energy 
regimes and identify narrow-energy resonances that are presently inaccessible to 
experimental investigation. 

22 



positron   trap ion   trap 

recirculating 
positrons 

FIGURE 1. Possible configuration for implementing positron ionization mass spectrometry us- 
ing a trap-based beam. 

Ill    POSITRON TRAPS AS BEAM SOURCES 

Several research groups have been investigating the use of Penning traps for vari- 
ous aspects of beam formation and handling. Penning traps are currently employed 
to capture positron pulses from LIN ACS for pulse-stretching applications [13,14]. 
The capture and cooling of positrons from a radioactive source using laser-cooled 
ions in a Penning trap is being investigated for the production of an ultra-cold 
positron beam [15]. 

The trap-based beam sources described in this paper employ the high efficiency 
buffer gas trapping technique that we have developed as described in an accompa- 
nying paper in this volume [16]. That paper also describes how the trap can be 
used as a high quality positron beam source by releasing the positrons in a con- 
trolled manner. Beams with energy spreads as low as 18 meV have been created 
and these beams have recently been applied to the study of positron-atom and 
positron-molecule interactions in a low-energy regime that is not accessible by any 
other technique [10]. 

A unique feature of positron traps is their ability to supply ultra-cold positrons. 
Once trapped, the positrons cool to the ambient temperature by cyclotron cooling 
or by collisions. Positrons as cold as 4.5 K have been produced in this way [17] and 
techniques for producing even colder positrons by collisions with laser-cooled ions 
are being developed [15]. For the positron beam demonstrated by Gilbert et al, 
the positrons were cooled to 300 K (0.025 eV) by collisions with room temperature 
nitrogen at a pressure <lx 10-6 torr The technique could be extended to liquid 
nitrogen temperatures or even to liquid helium temperatures if hydrogen were used 
as a buffer gas, because hydrogen is a molecular gas with appreciable vapor pressure 
at low temperature. 

23 



c 
0) 
o 
a. 
o 

</> 
o 

*-» a 
<o 
w 

. (a)    positrons 

L beam 
energy 

c 
0) 
o 
D. 
O 

u 
CD 

distance along magnetic field 

FIGURE 2. Axial potential profiles for creating pulsed beams 
quadratic potential dump. 

distance along magnetic field 

a) Conventional dump and (b) 

A    Pulsed beam formation using traps 

Pulsed positron becims are required for a variety of applications such as VEPLS 
and time-of-flight PAES. Various techniques have been developed for producing 
pulsed positron beams in conventional beamlines [1], but these arc often compli- 
cated and inefficient. Trap-based beams sources have the potential for producing 
pulsed positron beams in a simple and efficient manner. The simplest technique is 
illustrated in Fig. 2(a). Positrons are released from the trap by reducing the depth 
of the potential well in a series of steps. This technique produces pulse widths 
that are determined by the transit time of positrons in the well. For example, for 
room temperature positrons in a 1-cm long well, the pulse width would be ~100 
ns, which is suitable for many applications. 

Pulses of significantly shorter duration are required for VEPELS and TOF-PAES, 
and these can be produced using the more sophisticated technique shown in Fig. 
2(b). The positrons are dumped from the trap by applying a quadratic potential 
profile to the entire positron flight path, leading to spatial and temporal focusing 
at the target [2]. 

To first order, the pulse width is independent of the length of the positron cloud 
and is given approximately by: 

'my/2 zoAtf1'2 

(1) 

where e and m are the charge and mass of the positron, respectively, Vo is the 
magnitude of the applied potential, AE is the energy spread of the positrons, and 
z0 is the length of the length of the buncher. In practice, one might have Vo = 500V, 
z0 = 0.1 m and AE — 0.025 eV, yielding At ~ 150 ps, which would be suitable 
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FIGURE 3. Geometry for plasma compression by application of a rotating electric field. 

for lifetime spectroscopy. To achieve this performance in a conventional beamline 
would require multiple stages of rf bunching. 

B    Brightness enhancement using traps 

The capabilities of trap-based beam sources can be further enhanced by the use 
of recent breakthroughs in trapping technology. The most significant of these is 
development of a rotating electric field to compress nonneutral plasmas in traps. 
This has recently been demonstrated by Anderegg et al. for an electron plasma 
[18] and should be equally applicable to positrons. The maximum compression 
ratio reported was 4.5 in radius, without loss of particles. This would correspond 
to a brightness enhancement of 20 for a beam extracted from the plasma. Fur- 
thermore, it is likely that the technique has not been developed to its limit, so 
further improvements are possible. In addition, the rotating electric field can be 
combined with the technique of extracting positrons from the center of the plasma, 
as described below, to achieve even greater brightness enhancement. 

The basic geometry for plasma compression and beam extraction is illustrated 
in Fig. 3. A cylindrical plasma is contained in a Penning-Malmberg trap. An 
azimuthally segmented electrode is located near one end of the plasma. A rotating 
electric field is created by applying suitably phased signals to the ring segments. 
Plasma compression is observed when the applied frequency coincides with one 
of the Trivelpiece-Gould modes. Compression is accompanied by plasma heating, 
so some cooling mechanism must be provided. In the experiments of Anderegg 
et al, the cooling was provided by cyclotron radiation in the strong magnetic 
field of a superconducting magnet, which provides a characteristic cooling time 
TC(S) ~ 4/[B(T)}2. For the 4 T field that they used, this gives a cooling time of 
0.25 s. For many applications, it would be advantageous to replace the cyclotron 
cooling with buffer gas cooling and use a low-field conventional magnet to reduce 
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the overall cost of the system. 
For nitrogen gas, the cooling rate has been measured at 0.55 s/^Torr [19], so that 

at a typical operating pressure of 1 x 10~6 torr, the cooling time would be about 
0.5 s, which is similar to the cyclotron cooling time of the electron compression 
experiments. The annihilation time at this pressure is ~30 s. The plasma expansion 
time at these pressures is ~ 150 s, which is the slowest characteristic timescale in 
the system. The annihilation time therefore sets the time limit on which plasma 
compression and extraction must be achieved. Certain other gases are likely to 
serve as even better cooling agents than nitrogen. For example, for CO, the cooling 
rate at 10-6 torr is ~100 ms, while for CF4 and SF6, it is even faster. Since 
compression rates n/n of up to 0.6 s_1 were reported by Anderegg et al. using 
large-amplitude drives, it seems likely that significant compression can be achieved 
using gas cooling. 

A second process that can lead to brightness enhancement using traps arises 
from the nature of the extraction process itself: because there is a radial potential 
profile within the plasma, particles at the center of the plasma are ejected from 
the trap before those at the edge. Thus, a beam extracted from a trap is narrower 
than the plasma, at least for those particles that are ejected initially. The plasma 
remaining in the trap will then have a hollow profile, which is unstable. The system 
will come into a stable equilibrium by particle transport. This fundamental prop- 
erty of trap-generated beams, in conjunction with plasma compression, provides a 
potential method of extending the capabilities for brightness enhancement beyond 
that obtainable by plasma compression alone. 

The narrowest beam diameter, dm\n, that can be extracted from a plasma of 
diameter d is determined by the positron space charge, Vs, and the positron tem- 
perature Tp, and is roughly given by dmin ~ dJTp/Vs. Typical parameters might 
be Vs ~ 10 V, Tp = 2 meV (for cryogenic positrons), yielding dmm ~ d/70. If 
this can be achieved in practice, and combined with a factor of 25 in compression 
by the rotating electric field, a reduction of more than three orders of magnitude 
in beam diameter might be achieved in a single stage of brightness enhancement 
with an efficiency of up to 30%. Furthermore, these results can be achieved us- 
ing high-efficiency neon moderators, which have too large an energy spread to be 
used in conventional remoderation brightness enhancement systems. Even if the 
actual performance is an order of magnitude below this value, the system would 
still represent the state-of-the-art in positron beams. Furthermore, the analysis 
presented above ignores the electrostatic focusing that could potentially produce 
an additional factor of 10 if the positrons are extracted from the magnetic field. 

C    Proposed Developments 

First Point Scientific, Inc. (FPSI) is currently addressing the issue of trap-based 
beams by developing an advanced positron beam source (APBS) based on the 
accumulation of positrons from a radioactive source in a Penning trap [20].   The 
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new source uses the trap to create short positron pulses, followed by extraction 
from the magnetic field into an electrostatic beam line (Fig. 4). The APBS will 

include the following features: 

• Simplified low-cost, two-stage, design. 

• Integral quadratic potential buncher capable of producing subnanosecond 

positron pulses. 

• Electrostatic optics for extracting the beam from the magnetic field. 

FPSI is also considering the development of a complementary system in the form 
of a positron trap beam source (PTBS) that will employ a conventional three-stage 
design. While the PTBS will not be as economical as the APBS, it will include the 

following additional advanced features: 

• Rotating  electric field for  plasma compression permitting high  efficiency 
brightness enhancement. 

• Controlled extraction of the positrons from the center of the plasma to further 
increase the brightness enhancement. 

• Cryogenic electrodes to.produce ultra-cold positrons. 

These two systems have the capability of providing state-of-the-art postron beams 
for a variety of technological applications such as those described in Sec. IIC. 
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IV    SUMMARY 

Current developments in the fields of nonneutral plasma science and positron 
trapping technology have introduced exciting opportunities for the creation of a new 
generation of positron beams in the form of trap-based beam sources. These novel 
beam sources are based on new techniques that have never before been applied to 
beam production. They offer the possibility of producing state-of-the art positron 
beams with performance parameters more than an order of magnitude better than 
current systems. When incorporated into surface analysis tools used by industry 
and research, they offer the potential for substantially improved performance at 
lower cost. For scientific users, they offer new capabilities and the potential to 
investigate regimes not presently accessible to experiments. 
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Abstract. The production and study of cold antihydrogen will require the manipu- 
lation of dense and cold, single component plasmas of antiprotons and positrons. The 
undertaking will build upon the experience of the nonneutral plasma physics commu- 
nity. Annihilations of the antimatter particles in the plasmas can be imaged, offering 
unique diagnostic opportunities not available to this community when electrons and 
protons are used. The techniques developed by our TRAP collaboration to capture 
and cool antiprotons will certainly be used by our expanded ATRAP collaboration, and 
by the competing ATHENA Collaboration, both working at the nearly completed AD 
facility of CERN. We recently demonstrated a new techniques for accumulating cold 
positrons directly into a cryogenic vacuum system. The closest we have come to low 
energy antihydrogen so far is to confine cold positrons and cold antiprotons within the 
same trap structure and vacuum container. Finally, we mention that stored electrons 
have been cooled to 70 mK, the first time that elementary particles have been cooled 
below 4 K. In such an apparatus it should be possible to study highly magnetized 
plasmas of electrons or positrons at this new low temperature. 

INTRODUCTION 

The pursuit of cold antihydrogen began some time ago, long before a few an- 
tihydrogen atoms traveling at nearly the speed of light [1]. Unlike the extremely 
hot antihydrogen, antihydrogen that is cold enough to be confined in a magnetic 
trap for highly accurate laser spectroscopy offers the possibility of comparisons of 
antihydrogen and hydrogen at an interesting level of accuracy. 

In my Erice lecture in 1986 [2], shortly after we had trapped antiprotons of the 
first time [3], I mentioned our aspirations to make cold antihydrogen 

"For me, the most attractive way ... would be to capture the antihy- 
drogen in a neutral particle trap ... The objective would be to then study 
the properties of a small number of [antihydrogen] atoms confined in the 
neutral trap for a long time." 

sponsored by the ONR, NSF and AFOSR. 
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I was inspired by the attempts to confine neutrons and the recently successful 
trapping of atoms for the first time [4]. 

Later we compared the different mechanisms by which cold antihydrogen might 
be formed in a Penning trap [5]. We suggested that a "nested Penning trap", which 
we have since demonstrated [6], might provide the most useful environment. In 
addition to radiative recombination and laser assisted radiative recombination, we 
pointed out that the three body process whereby two positrons and one antiproton 
interact, would likely play an important role if positrons and antiprotons are merged 
directly. The instantaneous rate could be so high that this process could easily 
dominate. For laser assisted recombination we suggested that using a CO2 laser to 
stimulate recombination to n = 10 or a diode laser to stimulate to n = 3 were most 
attractive. We are pursuing the first option, but have found that the light from 
a laser diode array cannot be focused sufficiently in the configurations that seem 
most feasible. A titanium saphire laser now seems more attractive for stimulating 
to n = 3. 

Subsequently, the accumulation of both cold antiprotons [7] and cold positrons 
[8] in extremely high vacuum has become common, as has the trapping of hydrogen 
atoms [9]. A substantial "Antiproton Decelerator" (AD) facility is now under 
construction at CERN to carry forward experiments with low energy antiprotons, 
and two large collaborations (ATRAP [10] and ATHENA [11]) have formed to 
produce and study cold antihydrogen. 

We developed the techniques for accumulating low energy antiprotons to allow 
a precise comparison of the charge-to-mass ratios of the antiproton and proton, 
and to allow the production and study of cold antihydrogen. A comparison of 
q/m for the antiproton and proton to 9 parts in 10u was recently reported [12]. 
We will briefly review the steps required to accumulate cold antiprotons into an 
extremely high cryogenic vacuum, demonstrated to be better than 5 x 10~17 Torr 
using antiprotons as a vacuum gauge [7]. 

We discuss in more detail a new method for accumulating cold positrons directly 
into the extremely good cryogenic vacuum that is desirable for antihydrogen stor- 
age. Highly magnetized positronium in a high Rydberg state is formed, and then 
ionized within a Penning trap. 

The production of cold antihydrogen requires that antiprotons and positrons be 
allowed to interact. We have demonstrated that such an interaction can take place 
within a nested Penning trap [6]. The closest approach to cold antihydrogen has 
just been reported [13], though space will not permit much review of this crucial 
step towards cold antihydrogen. Cold positrons and cold antiprotons were simul- 
taneously confined. Finally, we mention the recently reported cooling of electrons 
to 70 mK [14], the first demonstration of an apparatus capable of cooling a single 
component plasma of elementary particles below 4 K. 
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COLD ANTIPROTONS 

The Low Energy Antiproton Ring (LEAR) at the CERN Laboratory in Geneva 
was so named because the 6 MeV antiprotons it delivered to users were much lower 
in energy than antiprotons available anywhere else in the world. Over a decade, our 
TRAP collaboration developed the techniques to slow and cool these antiprotons 
to an energy which is 1010 times lower. Some of the antiprotons slow below 3 
keV as they pass though a thin window [15], then are captured while within the 
electrodes of a Penning trap by a sudden application of a 3 kV trapping potential 
[3]. The trapped antiprotons, with energies up to 3 keV, are cooled via collisions 
with 4 K electrons that are preloaded into the trap [16]. As many p as will fit, 
limited by space charge to about 0.4 million, end up in a small inner, harmonic 
well with of order 107 cooling electrons. We trap up to 0.6 million antiprotons 
from a single LEAR pulse in our whole trap. The lighter electrons leave when the 
trapping potential is reduced to zero for a short time, leaving the much heavier 
antiprotons behind. 

A NEW TECHNIQUE TO ACCUMULATE COLD 
POSITRONS DIRECTLY WITHIN A CRYOGENIC 

VACUUM 

A cold plasma of positrons, confined in a region free of gas atoms, offers exciting 
research opportunities. Losses could be precisely monitored, and even spatially 
imaged, using the photons from e+ annihilation. A sufficiently dense plasma, in- 
teracting with cold antiprotons, could lead to the production and precise laser 
spectroscopy of cold antihydrogen. It is well established that a fraction of the en- 
ergetic e+ from a radioactive source, if sent into a crystal, will emerge with eV 
energies [17]. However, it is difficult to find an efficient physical mechanism which 
can slow even these low energy e+ rapidly enough to confine them in a nearly ideal 
vacuum. The challenge is that a charged particle by itself cannot travel into a trap 
and be captured. If it has enough energy to get into a region where conservative 
forces would confine it, it has enough energy to get out. Even a slow, 1 meV e+ 
travels 1 cm, the typical length of a trap, in only 0.5 ps. The required physical 
mechanism must remove sufficient kinetic energy on this time scale to allow the e+ 

to be trapped. 
In this section we demonstrate a new physical mechanism for capturing cold 

positrons in a nearly ideal vacuum [18]. We form strongly magnetized Rydberg 
positronium (which may itself be useful for antihydrogen production) and ionize it 
using a weak electric field within a Penning trap. The accumulation rate is orders 
of magnitude higher than was attained by electronically damping positrons passing 
through the trap [19,8]. Positrons are accumulated directly into an exceptionally 
high vacuum, with the density of background gas atoms shown to be less than 
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100/cm3 in a similar apparatus [7]. This is a pressure more than 10 orders of mag- 
nitude lower than used to initially capture positrons via collisional damping [20], 
an approach not yet demonstrated to be compatible with the cryogenic vacuum. 
As a e+ accumulation method, the new approach is simple, efficient and robust. 
An early version allowed simultaneous confinement of the ingredients of cold anti- 
hydrogen in a cryogenic vacuum [13]. The new physical mechanism is also unusual 
and extremely interesting in its own right, especially since only the formation of 
low excited states of positronium (Ps) has been previously observed [17]. 

Fig. la shows the simplicity of the apparatus. A thin transmission moderator, 
a 2 ßm tungsten crystal W(100), is added to an open access Penning trap [21] 
at one end. A thick reflection moderator, a 2 mm tungsten crystal W(110), is 
added at the other. Positrons from a radioactive source (2.5 mCi22Na with a 2 
mm diameter), traveling along field lines of a strong magnetic field (5.3 T), pass 
through the transmission moderator to enter the trap. They accumulate in the 
location shown. 
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x, positrons ., 
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FIGURE 1. The electrodes of an open access Penning trap (a) are biased to produce an electric 
potential (b) and field (c) along the central axis that confines e+ (solid curves) or e~ (dashed 
curves). A 5.3 T magnetic field parallel to this symmetry axis guides fast positrons entering from 
the left through the thin crystal and towards the thick crystal. 

Both the thin transmission moderator crystal and the highly polished reflection 
moderator crystal were treated using standard techniques [22]. They were heated 
by an electron beam to 1200 C in 10"6 Torr of oxygen for 30 minutes and then held 
at 2000 C for 3 minutes in a vacuum better than 10"7 Torr. After 5 repetitions the 
moderators were slowly cooled to room temperature, exposed to 1 Torr of oxygen, 
then placed into our apparatus. Both moderators were exposed to air for at least 3 
days before the apparatus was evacuated. The transmission moderator is suspended 
from four 70 /an tungsten wires to thermally isolate it. 

The potentials and electric fields used to accumulate e+ (solid curves in Fig. lb- 
c) are produced by separately biasing the stack of coaxial, gold-plated, copper ring 
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electrodes. Electrons are accumulated at the same location when the potential in 
the trapping region is reversed in sign (dashed curves in Fig. lb-c). The trap is 
completely surrounded by an evacuated copper enclosure kept at 4.2 K via thermal 
contact to liquid helium. The energetic e+ from the source pass through a shutter 
which either blocks them or allows them to enter the enclosure through a 10 /zm 
Ti window. A 2 pA e+ current is measured on the transmission moderator. 

A nondestructive measure of the number of accumulated e+ or e", equally ef- 
ficient for both species, comes from the Johnson noise spectrum across an RLC 
circuit attached to the trap electrodes. For an empty trap, the measured frequency 
spectrum is a Lorentzian centered at the circuit's resonant frequency (e.g. central 
peak in Fig. 2a). The harmonic oscillation of trapped particles along the magnetic 
field direction shorts the Johnson noise at the resonant frequency of the particles. 
The single peak splits into two, with a frequency spacing (e.g. Fig. 2a) that grows 
with the number of trapped particles in a well understood way [23]. Fig. 2b shows 
the accumulation of more than a million positrons. 

The new physical mechanism for accumulating positrons takes place one positron 
at a time; it does not depend upon the interaction of successive e+ from the source. 
The most direct evidence is that the number of accumulated e+ is proportional to 
the incident flux of e+ from the radioactive source. The radioactive source is pulled 
away from the trap, away from the homogeneous center of the superconducting 
solenoid, to vary this incident flux. The measured accumulation rate is a linear 
function of the directly measured e+ current on the reflection moderator. 

-500 0 500    ~ 
frequency-28612 kHz 

FIGURE 2.  More than one million positrons, measured nondestructive^ using the Johnson 
noise detection described in the text (a), are accumulated in 17 hours (b). 

The strong magnetic field is crucial to the new physical mechanism. It keeps the 
"guiding center" [24] of any slowed e+ or e~ that emerges from the transmission 
moderator on a magnetic field line as it passes through the trap. The tiny magnetic 
moment associated with a small radius cyclotron orbit about the guiding center 
has negligible effect on the trajectories. Such a moment is an adiabatic invariant. 
Since the magnetic field is homogeneous, the magnetic moment and the cyclotron 
energy to which it is proportional are essentially constant (except for radiation 
damping) and uncoupled from the axial motion. The electric fields of the trap (or 
from a partner particle of order 1 ^m away) will accelerate or decelerate a charged 
particles along its magnetic field line. These electric fields are not strong enough 
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allow E x B drift motion to move the particle appreciably off its one dimensional 
axial field line path during one pass through the trap. 

The new physical mechanism for capturing positrons arises when a moderated 
positron leaves the transmission moderator followed by a secondary electron. (As 
mentioned, an e+ cannot travel into the trap by itself and be captured.) The strong 
magnetic field keeps the e+ and e~ on nearby field lines. Biasing the transmission 
moderator to potential Vt with respect to neighboring electrodes adds energy eVt to 
one species and removes eVt from the other. Optimizing Vt (Fig. 3a) thus reduces 
the axial spacing between e+ and e~ and improves their axial velocity matching as 
they approach the potential well of the trap. If their Coulomb attraction energy 
exceeds their kinetic energy in the center-of-mass frame they are bound in a highly 
magnetized state of Rydberg positronium. This positronium is polarized and then 
ionized by the electric field within the trapping well if this field is strong enough. 
If the kinetic energy of the e+ is sufficiently low it will be captured, while the e~ 
carries off the excess energy. 

(b) • initial 
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-2        0 2 
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FIGURE 3. (a) Accumulation rates, strikingly equal for positrons and electrons, depend upon 

the potential of the transmission moderator, and hence upon the electric field at the moderator 

surface, (b) Changes in positron accumulation rate when adsorbates on the transmission moder- 

ator surfaces arc desorbed using laser pulses (100 ms of 818 nm with a 20% duty-cycle) with the 

total energy indicated. The cycling is to 300 K then back to 4.2 K. 

A distinct signature of this new physical mechanism is that the rates for accumu- 
lating e+ and e~ should be the same. Positrons are captured in the potential well 
represented by the solid curve in Fig. lb. Inverting only the well potential (dashed 
curve in Fig. lb) instead confines e~. The striking equality of the superimposed 
accumulation rates in Figs. 3a, 4a and 4b for positrons (filled circles) and electrons 
(open circles) provides the confirming evidence. The rates depend identically upon 
the trap potentials which are not inverted - the transmission moderator poten- 
tial Vt (Fig. 3a), the reflection moderator potential Vr (Fig. 4a), and the barrier 
potential Vb (Fig. 4b). 

As a further test that positronium enters the trap, we raise the potential between 
the transmission moderator and the trapping well by up to 6 V so that one of the 
charged species by itself could not enter the trap well at all. The potential changes 
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FIGURE 4. (a) Increasing the potential Vr of the reflection moderator opens a second channel 
for positron accumulation, (b) Increasing the potential barrier Vb above the potential Vr = 100 
V potential of the reflection moderator, shuts off the positron accumulation due to the slow 
positrons from the reflection moderator, and reveals an average kinetic energy of 1.5 eV, with a 
2.5 eV width. Two channels to positronium formation and positron accumulation are represented 

in (c) and (d). 

gradually enough as a function of position that the electric field does not increase 
significantly. If the loading mechanism does not involve neutral positronium this 
would essentially eliminate the accumulation. It does not. 

The positronium that is ionized must be in a high Rydberg state, with positron 
and electron well separated, insofar as the weak electric field of the Penning trap 
(Fig. lc) is sufficient to accomplish the ionization. Fig. 5 shows the accumulation 
rate as a function of the magnitude of the maximum axial electric field within 
the Penning trap. The electric field Ez necessary to counter the attraction of the 
e+ and e~, spaced by r, is Ez = 14(/xm/r)2V/cm in the simplest linear model, 
neglecting the kinetic energies. In this model, most of the positronium ionized thus 
seems to have e+ and e~ spaced by 1 — 5 /mi. As the electric field in the trap 
well is increased further than shown in the figure, the accumulation rate begins to 
drop slightly, presumably because the electric field starts to influence the tuning of 
the relative velocity previously optimized by changing Vt and more field ionization 
takes place before the trapping well. 

The formation of the ground state and lowest excited states of positronium at the 
surface of crystal moderators is well known [25], and becomes more efficient when 
the moderator is heated [26]. Stabilization of large-orbit positronium in a strong 
magnetic field is also predicted [27]. However, field-assisted formation of Rydberg 
positronium from a cold surface has yet to be theoretically investigated. 

The magnetized Rydberg positronium that we have been discussing is formed via 
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two distinguishable channels that arc represented in Figs. 4c - 4d. The first channel 
(Fig. 4c) is most direct. An energetic positron from the radioactive source slows 
in the transmission moderator, from which it emerges accompanied by a secondary 
electron and is ionized as described above. 

separation in urn (simple model) 

2.0 1.0 

accumulation rate 

energy distribution 
(slope of above, arb. units) 

0 10 20 

maximum electric field magnitude in trap (V/cm) 
FIGURE 5. Measured dependence of accumulation rate upon the maximum electric field mag- 
nitude within the confines of the Penning trap (points), and deduced shape of the ionization 
energy of the Rydberg positronium (dotted curve). 

The second channel (Fig. 4d) is more efficient, contributing twice as many accu- 
mulated e+ as the first, but is less direct. Most incident positrons emerge from the 
thin transmission moderator crystal with high enough energies to pass through the 
trap and strike the thick reflection moderator crystal. A fraction r)r ss 10~3 of these 
slow and diffuse near the entrance surface of this crystal, then emerge with energies 
of a few eV [17]. The second channel opens, as indicated by a substantial increase 
in the e+ and e~ accumulation rates in Fig. 4a, when a positive bias Vr on the 
reflection moderator gives these e+ sufficient energy to return to the transmission 
moderator. Fig. 4b gives direct evidence of these low energy e+ for Vr = 100 V. 
Varying the height of a potential barrier Vb placed in their path shows them to 
be moderated positrons, with an average kinetic energy of 1.5 eV and an energy 
width of 2.5 eV. Upon entering the transmission moderator some fraction of the 
backward traveling positrons are slowed in the transmission moderator and emerge 
accompanied by a secondary electron just as for the first channel. Above Vr = 400 
V the accumulation rate gradually decreases, presumably because an accelerated 
e+ penetrates deeply enough into the transmission moderator to be less likely to 
diffuse near the crystal surface and emerge with a secondary electron. 

The formation rate for Rydberg positronium depends upon the e+ and e~ work 
functions, which are modified by gas adsorbed on the surface of the transmission 
moderator. We gradually remove this layer with 100 ms pulses of up to 4 W of 818 
nm radiation (with a 20% duty cycle) from a laser diode, while the trap remained 
at 4.2 K. Fig. 3b shows the resulting decrease in the e+ accumulation rate. The 
peak in the accumulation rate also shifts to a value of the transmission moderator 
potential Vt that is higher by 2 V. The adsorbed gas layer and higher accumulation 
rate are restored when the trap and its vacuum container are simply warmed to 300 
K and then cooled back to 4.2 K. The restored accumulation rate is slightly larger 
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than initially observed. We observed similar changes in e+ efficiency when we used 
antiprotons and electron-beam heating to remove absorbed gas [13]. Nonetheless, 
over months of loading and repeated cycling of the apparatus between 300 K and 4 
K, the peak loading rate remains stable as long as adsorbed gas is not deliberately 
removed from the surface of the transmission moderator crystal. 

The peak loading rate we observed was 4 x 104e+/hr/mCi. This corresponds to 
2 x 10-6 trapped e+ per high energy e+ incident on the transmission moderator. 
(This would be 0.2% of the number of slowed e+ leaving the moderators if rjt = 
T)r = 10~3 of the e+ from the source emerge after being thermalized.) Improved 
rates for the production of Rydberg positronium and the accumulation of cold 
e+ seem possible. The most straightforward increase would come with a larger 
radioactive source. For example, a 150 mCi 22Na source (the largest available 
commercially in a compatible size) should increase the rates by a factor of 60, so 
that a million e+ should be accumulated in 12 minutes. Increasing the efficiency r]r 

for slowed positrons ejected from the reflection moderator, by covering the reflection 
moderator with neon [28], could improve the accumulation rate by more than an 
order of magnitude, provided that an insulating layer of neon would not be allowed 
on the trap electrodes. 

In conclusion, highly magnetized Rydberg positronium is formed when fast 
positrons from a radioactive source slow and pick up electrons from tungsten crys- 
tals in the presence of a strong magnetic field. With the application of appropriate 
electric fields, the Rydberg positronium is ionized. Either the positrons or the 
electrons can be accumulated by choosing the sign of the potential well. Equal 
accumulation rates for positrons and electrons give evidence that their source is 
positronium, and only Rydberg states could be ionized with the weak electric field 
that is used. The dependence of the accumulation rates upon the applied electric 
fields are presented to stimulate the development of detailed production models. 
As a positron accumulation method, the new technique is efficient, robust and 
compatible with a cryogenic vacuum. 

Many applications are envisioned. For antihydrogen production, the Rydberg 
positronium has a large cross-section [29] in collisions with antiprotons to form an- 
tihydrogen directly. Cold plasmas of pure positrons could be mixed with pure an- 
tiprotons to produce antihydrogen that is cold enough to be magnetically confined 
for precise spectroscopy measurements. The pure positron plasma in a cryogenic 
vacuum could also be used as a cooling fluid for highly stripped ions [8], just as elec- 
trons are used to cool energetic antiprotons [16], without fear of charge-exchange. 
Finally, a cold single-component plasma of positrons offers the unusual possibility 
to image losses spatially with a suitable annihilation detector. 

CLOSER TO ANTIHYDROGEN THAN EVER BEFORE 

Though space does not permit a review of the recently reported success we had 
in simultaneously confining the ingredients of cold antihydrogen [13], it seems like 
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a shame to pass over this significant step towards cold antihydrogen entirely. Fig. 6 
shows the apparatus and the electrical signals from the simultaneously trapped 
antiprotons and positrons. 
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FIGURE 6. (a) Electrode cross sections and the initial position of the simultaneously trapped 
p and e+. (b) Trap potential on the symmetry axis. Fits (solid curves) to the electrical signals 
from simultaneously trapped e+ (c) and p (d) establish the number of trapped particles. 

EVEN COLDER PLASMAS 

For some years single component plasmas of elementary particles have been stud- 
ied at temperatures down to 4 K. We have now managed to cool stored electrons 
down to 70 mK and below. So far, only one trapped electron (at a time) has been 
studied in detail at this low temperature, though there is no reason to expect any 
difficulties with larger numbers. 

Quantum jumps between Fock states of a one-electron oscillator reveal the quan- 
tum limit of a cyclotron [14]. With a surrounding cavity inhibiting synchrotron 
radiation 140-fold, the jumps show a 13 s Fock state lifetime, and a cyclotron in 
thermal equilibrium with 1.6 to 4.2 K blackbody photons. These disappear by 
80 mK, a temperature 50 times lower than previously achieved with an isolated 
elementary particle. The cyclotron stays in its ground state until a resonant pho- 
ton is injected. A quantum cyclotron offers a new route to measuring the electron 
magnetic moment and the fine structure constant. 
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The ATHENA Antihydrogen Experiment 

K.S. Fine (for the ATHENA Collaboration*) 

CERN-CH, Division EP, 1211 Geneva 23, Switzerland 

Abstract. The ATHENA experiment is being built at CERN to produce and trap neutral 
antihydrogen. Here we give an overview of the plans to produce antihydrogen. The experiment 
must 1) trap the antiprotons produced by the CERN accelerators, 2) produce and trap positrons, 
3) combine the two charge species into antihydrogen, and finally 4) detect the presence of the 
antihydrogen. In this paper we discuss how we intend to accomplish each of these steps. 

INTRODUCTION 

The ATHENA experiment is being constructed at CERN with the goal of producing 
neutral antihydrogen (H) for precise laser spectroscopy. A second experiment at 
CERN with a similar goal is being built by the ATRAP collaboration (1). The most 
important scientific goals are to test CPT invariance and to measure the gravitational 
charge of antimatter (2). This paper focuses on the plans for the production of 
antihydrogen. 

Producing H involves several steps: 1) trap and cool p's made by the CERN 

accelerators, 2) produce and trap an e+ plasma and 3) combine the two to form H. 
Finally, the presence of H must be detected. Figure 1 shows an overview of the 
ATHENA apparatus, designed to accomplish these goals. Antiprotons delivered by the 
Antiproton Decelerator (AD) arrive from the left. They enter into a superconducting 
magnet with a 3 Tesla field, where they are trapped in a Malmberg-Penning trap with a 
hyperbolic trap in the center. There they are cooled by collisions with a cold electron 
cloud. The electrons are cooled by emitting cyclotron radiation to the environment. 

The positrons arrive from the right, generated by a 22Na source. They are 
accumulated in a positron accumulator over a period of several minutes, then 
transferred to the superconducting magnet where they are also cooled by cyclotron 
radiation. At this point the electrons can be ejected, and then the antiprotons brought 
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FIGURE 1: Overview of the ATHENA apparatus. Drawing is to scale; dimensions are shown on the 
plot of axial magnetic field at the bottom. 

into contact with the positrons, where they will recombine by either two-body or three- 
body processes. An imaging detector surrounding the recombination trap detects the 
annihilations of the antihydrogen. In the following sections we will elaborate on these 
steps. 

PRODUCTION OF ANTIPROTONS IN THE AD 

Antiprotons are produced and accumulated in the Antiproton Decelerator (AD) at 
CERN. The antiprotons are created by colliding a 26 GeV/c proton beam with an 
iridium target, and then separated from other particles using a mass spectrometer. The 
antiprotons are then steered into the AD storage ring where they are decelerated and 
cooled by stochastic and electron cooling. The AD ring is capable of delivering one 
bunch of about 107 p 's at a kinetic energy of 5 MeV every 2 minutes. 

The AD ring is approximately 60 meters in diameter, and the antiproton 
experiments are installed inside this ring. There are three experiments: ASACUSA, 
designed to study various aspects of antiproton physics, including the spectroscopy of 
antiprotonic helium the ATRAP experiment, which has already been mentioned, and 
the ATHENA experiment discussed in this paper. Each p bunch will be delivered to 

one experiment at a time. 
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Commissioning of the AD ring is currently foreseen to finish in November 1999. 
Since the CERN accelerator complex is closed during the months from December to 
April, the beginning of physics in the AD is expected to be in May 2000. 

TRAPPING OF ANTIPROTONS 

Figure 2 shows the scheme to be used to degrade and capture the antiprotons. The 
p bunch from the AD beam line is shown arriving from the left, where the bunch exits 
the AD vacuum system through a thin titanium foil. The p's make a short journey in 
air, where a silicon counter will be placed. The counter will be useful to trigger the 
voltages that trap the p's. The p beam then enters the ATHENA vacuum system 
through another thin titanium foil. The beam next encounters a segmented silicon 
detector, as shown in Fig. 2. The segments will give information about the centering 
and radial profile of the bunch. Note that the vacuum system shown on the right side of 
Fig. 2 is the bore of the 3 Tesla superconducting magnet. As the bunch enters into the 
bore and traverses the second silicon detector, it is compressed by the 3 Tesla magnetic 
field. 

Inside the bore of the superconducting magnet is a second vacuum system, called 
the "cold nose". This design was driven by the need to have two temperatures 
available: the particle traps should be at LHe temperature (4 K) to cool the particles as 
much as possible, while the H detector electronics operates better at LN2 temperature 
(77 K). The magnet bore will be connected to the magnet LN2 reservoir, and the 
detector will be thermally anchored to the bore. The cold nose will be inside the 

Vacuum Windows 
12nmTi 

Degrader 
120 um Al 

SELAJ 

Entrance Counter 
6 |j.m Silicon 

Beam Monitor 
50 um Silicon 

FIGURE 2: Path of the antiproton bunch into the ATHENA apparatus. The AD vacuum system is on 
the left, on the right is the bore of the ATHENA superconducting magnet at 10"6 Torr. Inside this bore is 
another vacuum system at 10'12 Torr. A very low pressure is necessary to reduce annihilation of the 
antiparticles by neutral atoms. 
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FIGURE 3: Antiproton bunch (black) is captured by quickly ramping a -15 kV potential after the p 
bunch enters the trap. Electron cloud (grey) is cooled by radiating cyclotron radiation, and the cold 
electrons cool the antiprotons by collisions. 

detector, and will be cooled by a separate external cryostat. The cold nose will contain 
the particle traps. 

Finally, the p bunch will traverse an aluminum degrader. The thickness has been 

chosen so that about half of the p's will annihilate, and those that emerge will be 
spread over the energy range from 0 to 500 keV. Those in the range from 0 to 15 keV 
will be trapped downstream from the degrader using the technique illustrated in Fig. 3. 
A cylindrical Malmberg-Penning trap will have the far end electrode at -15 kV, and 
will quickly ramp (-100 ns) the other end electrode to -15 kV after the p bunch enters, 
trapping all p's in this energy range. This will trap between 104 to 105 p's. The p 
cloud will then be cooled by collisions with an electron plasma trapped in a hyperbolic 
region of the larger trap. The electrons are cooled by cyclotron radiation (T~0.4 sec), 
unlike the p's which are too massive for significant radiative cooling. Once the 
particles are cooled, the end potentials can be reduced to voltages below 100 volts, and 
the electron cloud can be ejected by quickly lowering and raising an end electrode. The 
light electrons will be ejected before the heavier p's can escape the trap. 

PRODUCTION AND ACCUMULATION OF POSITRONS 

A separate paper in this volume describes the positron accumulation scheme (3), 
originally developed by Cliff Surko's group at UC San Diego (4). We use the 
radioactive decay of 22Na as an e+ source along with a neon moderator to reduce the 
energy of the positrons. The positrons then fall into a Malmberg-Penning trap by 
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FIGURE 4: Positron transfer section. During the transfer, the radial size of the positron cloud is 
reduced due to the magnetic field of the transfer magnet, while the neutral buffer gas from the 
accumulation section is impeded by the small vacuum conductance of the tube. 

losing energy due to collisions with a background N2 buffer gas. The trap is within a 
normally conducting, 0.15 Tesla magnet. 

Once sufficient numbers of positrons are accumulated (more than 108 after ~5 
minutes), the pressure is reduced, and the positrons transferred to the same 
superconducting magnet where the antiprotons are stored. The advantage of this 
technique is that large numbers of positrons can be quickly accumulated. The 
disadvantage is that the buffer gas can leak into the antiproton trap and raise the 
pressure, leading to a limited lifetime of the antiprotons due to annihilation. In order to 
reduce the leakage of the buffer gas into the antiproton trap, a differential vacuum 
transfer section is being constructed. 

The design of this transfer section is illustrated in Fig. 4. A vacuum gate valve will 
normally separate the positron accumulator from the recombination and antiproton 
traps, which are contained in the superconducting magnet. During the positron transfer, 
the gate valve is opened for a few seconds. The positrons are accelerated into the 
transfer section. There they are squeezed by the field of the transfer magnet to a 
diameter of less than 2 cm, allowing them to pass through a small electrode that will 
act as a "choke" for the buffer gas. This setup will maintain a pressure difference of at 
least a factor of 100 between the two regions. 

RECOMBINATION 

Once both the antiprotons and the positrons are inside the superconducting magnet 
and are cold, the two charge clouds must be overlapped for recombination to occur. 
Several schemes have been discussed to accomplish this in Malmberg-Penning traps 
(5). 

44 



When the two charge species are in contact, they can recombine by two-body or 
three body collisions (6). (There are also ideas to induce recombination with resonant 
laser stimulation (7)). The recombination rate scales with positron temperature T and 
density n as 

2-body: e++p=>H + /m       R~n  T^2 

3-body:     e++e++p=>H + e+        R~n2T-9'2. 

In both cases a low positron temperature and a high positron density results in a higher 
recombination rate. It is certain to be advantageous for the positrons to be as cold and 
dense as possible. This means that the best recombination rates are achieved when the 

positrons are in the plasma regime, i.e. when the Debye length X D = -y/T/47r ne2 

becomes smaller than the size of the positron cloud (8). 

The plasma temperature may be significantly higher than the electrode wall 
temperature (9), contrary to common belief. The electrostatic energy of a nonneutral 
plasma is large compared to its thermal energy, and any slow expansion of the plasma 
liberates electrostatic energy, which will be converted to thermal energy. Assuming 
collisions with neutrals can be neglected, the only cooling mechanism is cyclotron 
radiation. If the plasma has a radial expansion time given by xm, a cyclotron cooling 
time given by xc and the electric potential at the center of the plasma is <j)p, then in 
equilibrium 

dT _ Ne(j)p    NkT 

dt       xm        xr 
= 0, 

where N is the number of charges in the trap. Therefore, the plasma temperature will 
have a lower limit of kT/e « (xc/tm)<|)p. At the 3 Tesla field planned for ATHENA, 

xc~0.4 seconds. If the potential of the positron cloud is 10 Volts, this requires 
expansion times >104 seconds to achieve temperatures as low as 4 K (0.0004 eV). 

ANTIHYDROGEN DETECTOR 

Once antihydrogen is formed in the trap, it will no longer be contained by the 
electric and magnetic fields, and will move in a straight line out of the system. Once it 
collides with the electrode wall or with a background gas atom, both the positron and 
the antiproton will annihilate almost simultaneously, within about 1 ns of each other. 

The antihydrogen detector will surround the vacuum system of the recombination 
trap. The detector detects the products of both the antiproton and the positron 
annihilations. The annihilation of antihydrogen is distinguished from that of unbound 
antiprotons and positrons by the fact that with antihydrogen both the antiproton and the 
positron annihilate at the same point in time and space. 
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Silicon 
Strip Detectors 

100 mm 

FIGURE 5: Cross section of the antihydrogen detector and recombination trap. The charged particles 
are in the center; the inner black ring represents the electrode where annihilation occurs. The 511 keV 
gammas are detected by the Csl crystals and the pions by the silicon strip detectors. Drawing is to scale. 

The annihilation of an antiproton on a nucleon produces on average 3 to 4 charged 
pions in the 50 to 900 MeV energy range. Si strip detectors, arranged in two layers 
around the recombination trap, measure two points of the trajectories. Each layer of 
strip detectors consists of 16 detector modules arranged around the circumference, 
with each module having 128 strips on one side (r-cp) and 128 pads (z) on the other 
side. The vertex of the antiproton annihilation is determined by the intersection of the 
lines extrapolated from the measured points on the strip detectors. The error on the 
vertex position is largely dominated by the unknown curvature of the pion tracks, 
leading to an average extrapolation error of about 1 mm. 

The annihilation of a positron produces two 511 keV back-to-back gamma rays. 
They are detected in an array of 16 (r) x 12 (<p) Csl crystals with dimensions 17 (r) x 
17.5 (cp) x 13 (z) mm, surrounding the Si strip detectors. If two crystals register energy 
deposits compatible with 511 keV gamma rays within about 1 microsecond of an 
antiproton annihilation, it is assumed that they originate from within a straight line 
between the two crystals. For antihydrogen annihilation, it is then required that the 
vertex position determined by charged pions lies within the errors in determining this 
line. 
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The figure of merit of the detector is the ability to pinpoint the vertex of these 
annihilations in space and time. This detector will locate the vertex of the pions to rjz ~ 
5 mm, and ar(p ~ 1 mm. The vertex of the gamma rays is located to a tube of radius CTT 

~ 7 mm. The time resolution of the device will be about 1 |j.Sec. 

Many details have been left out of this simplified description. The evidence for the 
existence of H will be statistical, since there are several background sources. The 
main source of the 511 keV background is positrons annihilating in the material 
outside the detector. These positrons stem from pair creation by n0 decay gamma rays, 
which are emitted during the antiproton-nucleon annihilation. 
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Abstract. Ultra slow mono-energetic antiproton beams are under preparation combining novel 
techniques to decelerate antiprotons with an RFQD (Radio Frequency Quadrupole Decelerator), to 
trap, cool, and compress in an electromagnetic trap, and finally to extract as an ultra slow mono- 
energetic beam. This unique beam will make it possible to study the ionization processes around 
adiabatic energy regions, channeling, stopping power, antiprotonic atom formation processes under 
single collision conditions, to prepare metastable antiprotonic atoms such as pp, pHe+, 
pHe++, pLi+ in vacuum, and to make high precision laser spectroscopy of them. This project 

named ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) is expected to 
open a new physics regime in antimatter science under well controlled conditions. 

INTRODUCTION 

Before the termination of LEAR (Low Energy Antiproton Ring) at CERN in 
1996, atomic collisions particularly charge asymmetry effects and high resolution 
laser spectroscopy of antiprotonic helium ( pHe+) were intensively studied. 
Recently, the second generation facility, AD (Antiproton Decelerator), devoted to 
atomic physics experiments had been approved at CERN, and is expected to start its 
operation before the end of 1999. Until now, three proposals have been approved, 
two of which are on the production and spectroscopy of antihydrogen (ATENA and 
ATRAP collaboration) aiming to investigate a violation of CPT. The third one is on 
atomic collisions and spectroscopy of antiprotonic atoms (ASACUSA collaboration), 
which is to be discussed in the present report (1). 

When an antiproton approaches an atom, an outermost electron is repelled by the 
antiproton, which causes the binding energy of the outermost electron to be 
shallower. In such a case, even a very tiny "kick" is strong enough to liberate the 
electron from the atom. This is expected to be a universal scenario of ionization at 
the initial stage induced by slow negatively charged heavy particles, which is 
essentially different from those by positively charged heavy particles. It is noted 
however that such a scenario has never been tested simply because no such beam has 
been available. Until now, ionization processes with antiprotons were studied as 
low as a few tens keV (2). Theoretical predictions get conflicting with each other 
below this energy range, i.e., it is crucial to prepare antiproton beams with lower 
energies, which is the important subject of ASACUSA project beyond the foregoing 
projects in the LEAR era. 

When the kinetic energy of the antiproton is less than the binding energy of the 
outermost electron, the particle is bound to the atom after the release of the electron, 
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which is a naive picture of an "exotic atom" formation process. As is discussed 
later, the binding energy of the particle just after the formation is comparable to or 
even less than the binding energy of the released electron, i.e., the particle is in a high 
Rydberg state. Furthermore, a considerable fraction of them are in a high angular 
momentum state, which is expected to be metastable with cascading lifetimes of the 
order of usec or even longer, and a laser spectroscopy with a precision as high as ppb 
becomes in principle possible. However, in the real world, it is well-known that 
energetic hadrons with negative charge annihilate immediately in dense media 
through thermalization and antiprotonic atom formation. Inter- and Intra-Auger 
transitions and Stark mixing induced by neighboring atoms have been considered to 
be responsible to accelerate cascading processes and to shorten the lifetime. 
Because of this "common sense", it was a big surprise when metastable particle-He 
complexes were found and identified (3, 4). Particularly, in the case of antiproton, a 
considerable fraction of pHe+ has been found to survive more than ~usec even in 
liquid He. _This extreme metastability has allowed to determine the binding 
energies of pHe+ with ppm or even better precision, which provides the charge ratio 
and mass ratio between protons and antiprotons with an accuracy an order of 
magnitude better than before (5). Extensions of the pHe+ spectroscopy to higher 
resolution including a laser-microwave double resonance to measure hyperfine 
structure is the important subject of the ASACUSA project. 

There have been vast progresses in catching and cooling antiprotons in an 
electromagnetic trap, which opens a way to develop ultra slow monoenergetic 
antiproton beams (6). Once developed, various antiprotonic atoms can be prepared in 
vacuum keeping their intrinsic metastability, which enables for the first time to make 
a high precision laser spectroscopy of various antiprotonic atoms such as protonium 
( pp), the simplest pure hadronic atom, pHe^, pLi+, etc. (1) (7). Such an ultra 
slow antiproton beam will be prepared by the combination of AD (antiproton 
decelerator), RFQD (radio frequency quadrupole decelerator), and a Multi-Ring 
electrode trap (MRT) (8). By this way, the number of ultra slow antiprotons 
available will at least be two orders of magnitudes larger than ever achieved. 

In the following sections, several research plans are discussed together with the 
procedure to prepare ultra slow antiprotons, which includes in itself various 
interesting research fields like accelerator physics, non-neutral antimatter plasma 
physics, etc. 

PRODUCTION OF ULTRA SLOW ANTIPROTONS 

Antiprotons had been discovered in 1955 for several GeV protons hitting a target (9), 
the reaction of which is given by 

p + p->  P + P + P + P- 0) 

Considering that the inner product of 4 dimensional momentum is invariant with 
respect to Lorentz transformation and four particles in the final states are all at rest in 
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the center of mass frame (eq.l), the threshold energy of incident protons to produce 
antiprotons is evaluated to be about 5.6GeV in the target frame, i.e., the antiprotons 
so produced inevitably possess kinetic energies at least several hundreds MeV.    In 
old days, the only way to get 
low energy antiprotons was to 
use a degrader foil followed by 
a momentum  selector,  which 
yield   only   weak   and   low 
quality antiprotons 
contaminated by 2 orders of 
magnitudes stronger pions and 
muons of the same momentum. 
In this respect, it was really a 
revolution when LEAR started 
to  supply high intensity  and 
high quality ~5MeV   p, which 
reduces the kinetic energy by 
three digits. What is going to 
be discussed here is to reduce 
another five digits, i.e., a new 
regime    in    slow    antiproton 
studies. 

FIGURE 1. A schematic drawing of the proton 
synchrotron complex and AD at CERN 

As is schematically shown in fig.l, the production of a high quality antiproton 
beam of-10 eV is going to be realized via 

1 production of ~5xl07 p/pulse at around 3.5GeV/c with 26 GeV/c protons 
of 1.5x10,3/pulse supplied from theCERN PS (proton synchrotron) 

2)Accumulation of the 3.5GeV/c p, cooling, and deceleration down to 
100MeV/c (5.3MeV/u) in the AD (Antiproton Decelerator), which takes 
~lmin for cooling and deceleration. (Because of this macroscopic cooling 
time, slow unstable particles such as u" or % are not available in this way.) 

3)Extraction of -lxlO7 antiprotons per lmin. at 5.3MeV/u with the pulse 
width of ~250ns from the AD, and deceleration down to ~50keV by the 
RFQD (radio frequency quadrupole decelerator). (The electrodes of the 
RFQD can be biased by 50kV, i.e., the energy of p from the RFQD is in 
principle continuously tunable from 0 to lOOkeV) 

4)Injection into a superconducting solenoid where the Multi-Ring electrode 
Trap (MRT) is installed. 

5)Capture,  cooling  down  below  eV,  radial  compression,  and  finally 
extraction from the MRT, which is expected to provide ultra slow 
antiprotons with an efficiency of several tens %. 

Transport features of the antiprotons from the RFQD to the trap have been 
simulated intensively by the RFQD group at CERN, which tells that the envelope (at 
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5 standard deviations) of the antiproton trajectories is compressed down to ~2 mm in 
radius upon injection at the center of the solenoid (10) (11). 

A schematic diagram of the antiproton cooling procedure is given in fig.2. In 
order to capture antiprotons with rather low trapping potential, a thin degrader foil 
will be inserted to reduce the antiproton energy below 10 keV. The foil can be 
positively biased, which effectively reduces the energy straggling of the degraded 
beam and eventually increases the trapping efficiency (12). The right end electrode 
of the trap (see fig.4) is negatively biased so that it reflects antiprotons. Before the 
reflected antiprotons reach the left end of the trap, the left end electrode is biased 
from 0 to <-10 kV, which results in trapping the antiprotons. In the trap, electrons 
are pre-loaded, which are cooled via synchrotron radiation with a time constant Trad. 
At 5T, xrad is about 0.1 sec (7). The cooled electrons then cool the injected 
antiprotons  via the  Coulomb 
interaction in the time range of | Solenoid Coil 
10 sec. (6) (13). The MRT has 
been employed to store as 
many as ~5xl06 p and about 
100 times more electrons in a 
prolate spheroid with a radius 
~1 mm and its axial length ~50 
mm with a rather low trapping 
potential. It is noted that the 
overall trapping efficiency of 
the present setup is designed to 
be about two orders of 
magnitudes higher than that 
obtained by a conventional 
trapping scheme, i.e., the 
combination of a degrader foil 
and an electro-magnetic trap. 
Recently, slow positrons of 
0.1 eV to several tens eV with 
an energy width of about 
18meV have been successfully 
prepared   (14)   employing   a      ~J 10' p 
method similar to what is 
discussed here, which supports 
the scheme described here. 

Injection   f 
~^^ 

Capture 

Cooling, 
Compression 

Electron 
Ejection 

Extraction 

~^mf~ 

FIGURE 2. A schematic procedure to trap, cool, 
and extract antiprotons. 

Figure 3 shows a drawing of the superconducting solenoid, which is designed so 
that (a)the bore is bakable while keeping the superconducting solenoid at liquid 
helium temperature, and (b)the bore where the MRT is installed is independently 
movable to align the MRT axis to the symmetry axis of the magnetic field, which is 
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essential to realize a successful extraction of slow charged particles. Further, the 
magnetic field is scannable at 5T/90sec, which allows us to vary the field strength 
depending on the operational stage, i.e., injection, cooling, or extraction. In order to 
simulate the whole procedure to prepare ultra slow p trapping, cooling, and 
extraction, experiments with p and H" are in progress (13). 

As is well known, the rotation angular frequencies for electron and antiproton 
plasmas, coe and a> -, are given by 

roc = (l/2)(cocc+-(öC£
2-2 0,'2), (2) 

<D-P =   (m/2mp)(ü>ccMöce2-2(m/2m>pe
2)1/2) , (3) 

respectively, where coce is the cyclotron 
angular frequency of electron (=eB/me), 
K»pc is a plasma angular frequency of the 
electron, which is defined as 
((Pe+Pp)e2/mce0)

1/2 ~ 5xl04 (p^cm3))"2 

(sec"1). In the present condition (i.e., pc 

» p - ), pc governs the Brillouin limit 
for antiprotons as well as that for 
electrons, which are 3xl09B(T)2/cm3 and 
5xl012B(T)2/cm3, respectively. The 
solenoid is designed to yield 5T, which 
guarantees that the expected plasma 
density is well-below the Brillouin limit 
even for antiprotons. In this case, coe

+ 

and co -+ are approximately given by coce 

and (me/m -) coce (= coc - ), respectively, 
andco„ and co -' are 

co„ 

co- 

~   (copc
2/2 coce) (1+ cope

2/2co«2), 
(4) 

~(cope
2/2 cocc)(l+ m - copc

2/2me coce
2), 

(5) 
FIGURE 3. A drawing of the 5T 
superconducting solenoid, 

respectively. Equations (4) and (5) tell that (a) co -" is proportional to pJB, i.e., the 
kinetic energies of antiprotons and electrons due to the rotation are higher for lower 
B, (b) for pe~5xl09/cm3 and B=5T, co-" is ~2% larger than co/, which causes the 
antiproton cloud to be extruded out from the electron cloud (15,16), and (c) co -" is 
~107/sec, which corresponds to the p kinetic energy of-0.5 eV at the periphery of 
the plasma. This rotation could cause a serious problem if one wants to have very 
cold antiprotons in the laboratory frame although the antiproton temperature in the 
rotation   frame could be as low as the environmental temperature, i.e., several K in 
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FIGURE 4. A drawing of the MRT. 

the present case. 
A drawing of the MRT is shown in fig.4, which consists of 14 cylindrical 

electrodes of 40 mm in inner diameter and total length of -500 mm. Seven 
electrodes near the center are to form a harmonic potential to stably store and cool 
antiprotons (8). One of them is segmented into four so that a rotating field can be 
applied to the plasma to increase or decrease its rotation frequency (17) (18). As is 
seen from eqs. (4) and (5), the higher the frequency, the higher the density, i.e., the 
plasma is compressible by applying appropriate rotating fields. The plasma 
compression in the MRT has been successfully tested with electrons (13). 

Cooled antiprotons will be extracted at ~keV as a continuous or a pulsed beam 
from the trap and transported to the target area, where the antiprotons are decelerated 
down to 10 eV range. Several differential pumping stages separated by small holes 
(~3 mm<|>) are necessary on the way from the trap to the target chamber, to keep the 
trap area at UHV and at the same time to use a gas cell of 10"3Torr in the target 
chamber. 

ATOMIC PHYSICS WITH ANTIPROTONS 

Ionization 

One of the most fundamental process in atomic collisions is ionization. In 
particular, ionizing processes in p-H collisions provide the simplest and accordingly 
the ideal case to test our understanding of collision dynamics (2) (19). At high 
velocities (i.e., the projectile velocity is much higher than a typical velocity of the 
electron to be ionized), single ionization cross sections are known to be practically 
the same for p and p as the first Born approximation tells. When the projectile 
velocity gets lower, the polarization effects and then deflection effects start to play 
roles, which make the ionization cross section by p to be smaller and then higher 
than that by p. 

Single ionization cross sections of D for  p are summarized in fig.5 together with 
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several theoretical predictions (20) (21) (22). It is seen that the theoretical 
predictions agree more or less with one another for energies higher than ~ 50 keV as 
well as with the experimental results. At lower impact energies, although the 
scatter among different theoretical predictions is rather large, many theoretical results 
predict that the cross section becomes almost energy independent. Already in the 
late 40', Fermi and Teller (23) discussed that the binding energy of an outermost 
electron of the atom gets smaller when an antiproton approaches an atom, and at a 
certain distance, dcr, the binding energy vanishes (dcr is called the critical distance), 
i.e., the atom is ionized even when the collision evolves adiabatically as far as the 
distance of closest approach is smaller than dcr. It is noted that such a behavior is 
quite different from that of the ordinary ion-atom collisions, where the ionization 
cross section decreases as the projectile velocity decreases unless a resonant charge 
transfer process comes into play. According to this discussion, an expected ionization 
cross section is -1.3 a.u. (Fermi-Teller limit) considering dcrfor H is 0.63 a.u. It is 
noted that the experimental results are about three times bigger than the Fermi-Teller 
limit.   It is predicted that "non- 2.5 
adibatic effects in adiabatic 
collisions" play important roles 20 

because the binding energy gets 
very shallow during the collision, 
i.e., the Massey criteria, 
27taAE/hu » 1 (a is of the order 
of the impact parameter, AE the 
energy difference, h the Planck 
constant, and u the projectile 
velocity),    is    not   necessarily 
satisfied for negatively charged 1 10 100 1000 
particles even at low velocities. EncrfyiKcv 

FIGURE 5. Single ionization cross section 
of D by antiprotons (see the text for details) 
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The single ionization cross section of He shows a clear peak at ~70 keV in 
contrast to the D target case (2) (24). It is noted that the critical distance for He is 
"negative", i.e., the electronic binding energy stays negative finite even under unified 
atom limit, which is known as H". Ionizations of atoms and molecules with different 
critical distances are expected to be very important for comprehensive understanding 
of collision dynamics. 

Kinematically complete ionization experiments of hydrogen and helium targets 
by antiprotons are under discussion employing a technique of Recoil-Ion Momentum 
Spectroscopy (25), which will be combined with a table top electrostatic storage ring 
(26). The double ionization process of helium by antiproton has been intensively 
studied, which revealed that a^ p) is about two times larger than ^(p) of the same 
velocity even for projectile energies as high as 10 MeV/u (2). It has been shown 
that the electron-electron correlation plays an essential role to reproduce the 
observations.    In this direction, the study of double excitation process combined 
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with the kinematically complete experiment described above should be very 
interesting, because a collision system with (quasi-)bound states can be handled more 
accurately as compared with those involving two continua like in the case of double 
ionization, and could be more sensitive to details of the collision dynamics (27). 

The stopping power of ~keV antiprotons, the channeling of -100 keV 
antiprotons through a single crystal target, etc. will also be studied with beams 
directly from the RFQD and the MRT. It is predicted that -lOOkeV antiprotons 
show a characteristic channeling pattern (28), which will be experimentally studied 
for the first time with antiproton beams from the RFQD. 

Antiprotonic Atom Formation 

When an antiproton with very low kinetic energy ionizes an atom, it can be 
trapped into an atomic orbital with a large principal quantum number n. Considering 
the energy conservation before and after the collision in the center of mass system, 
the binding energy of p,£-pA, is estimated to be 

SpA(~(^iAH)(%/n2))    ~    Ee, K pA> (6) 
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— pbar + H2 (protonium) 
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where nAB is the reduced mass of particles A and B, ER is the Rydberg constant 
(-13.6 eV), EAB is the binding energy between A and B, KAB = (l/2)nAB uAB

2, and uAB 
is the relative velocity between A and B (7).   Equation (6) tells that (a) the trapping 
cross section is finite if 0 < K -A < e^, 
and (b) n is a function of K -A, which 
varies from        nmia        (~(UpA 

/me)(sR/e-pA )m ) to infinity as K-A 

increases   from   0   to   e,^,   i.e.,   the 
principal quantum number n is tunable. 
Because the momentum carried by the 
released electron is fairly small, the 
momentum of  pA+ is practically that 
of the incident   p.    In other words, 
the   pA+ so prepared could be used as 
a high quality beam maintaining the 
quality of the incident p beam. 

20 40 60 80 

ENERGY (eV) 
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FIGURE 6. Protonium formation cross 
section for H and H2 (see text for details). 

The above qualitative arguments are more or less confirmed by a CTMC 
(Classical Trajectory Monte_ Carlo) method and an FMD (Fermion Molecular 
Dynamics) method to treat p-H and -H2 collisions in a low energy region (29)(30), 
the prediction of which is shown in fig. 6. The solid line and the dotted line shows 
protonium formation cross section, a -p, and total (formation and ionization) cross 
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section, CJ„ in p-H collisions, respectively. A clear threshold is seen at around 
30eV for a pp, although a, varies smoothly. The same calculation predicts that the n 
distribution peaks at around 30, 38, and 60 for the antiproton energy of 2.7, 10.8, and 
21.8eV, respectively, which is also consistent with eq.6. The / distribution peaks at 
around 25, 35, and 30 for the above antiproton energies (30). At very low energies, 
the polarization of the target atom becomes important, which makes the antiprotonic 
atom formation cross section to be inversely proportional to the antiproton velocity. 

The prediction for H2 targets are also shown in fig.6, which indicates that initial 
internal motion of the molecule plays an important role in the antiprotonic atom 
formation process (29). Because of this, the antiprotonic atom formation cross 
section stays finite even beyond the threshold energy given in eq.6. The dash-dotted 
line and the dashed line in fig.6 show CT -p, and a, for p-H2 collisions, respectively. 
The internal motion also considerably broadens the angular distribution of pp. The 
role of the third body in determining the pA+ formation cross section above the 
threshold has also been predicted for multi-electron system like Ne (31). Further, 
molecular targets could provide an interesting chance to study a "dynamic Stark 
effect" because the antiprotonic atom evolves in the electric field of the spectator 
atom (ion) for a finite time. The electric field will increase the fraction of s-state 
components due to Stark mixing, and accordingly increase the annihilation rate, 
which may provide a new and sensitive measure of collision dynamics. 

Various multielectron antiprotonic atoms are also expected to have intrinsic meta- 
stability, which can be realized only when they are produced in vacuum under single 
collision conditions. Like in the case of H, Li has a positive critical distance for 
antiproton (dcr=0.79 a.u) (32). As the antiproton replaces the 2s electron of Li, it is 
far outside of the residual two Is electrons, i.e., the Auger transition rates will be 
fairly small because the transition energies are large and the spatial overlap between 
the initial and the final orbits is small. It is further noted that the antiprotonic states 
with the same principal quantum number but with different orbital angular quantum 
numbers do not degenerate, i.e., pLi+ is strong against annihilation induced by Stark 
mixing(32,7,ll). In the same direction, pHe+ produced in collisions with He in 
metastable states(ls2s1,3S, ls2p3P, etc.) is also expected to be very stable. pHe+ 

eventually decays into pHe+ +, which is again metastable as far as it is in vacuum. 
Other examples of metastable antiprotonic are discussed in ref.(7) (11). 

High Precision Spectroscopy of Antiprotonic Atoms 

The discovery of meta-stable pHe+ has made it possible to study the nature of 
antiprotonic atoms with high precision laser spectroscopy (3) (33). This field has 
developed rapidly from the level of identification of the principal and angular 
momentum quantum numbers {i.e., n and I) to the level of determination of the 
transition energies with a fraction of ppm (5), which agrees with theoretical 
predictions taking into account relativistic and QED effects on the bound electron 
(34) (35) (36). The above finding tells that if the theoretical treatment of the 
Coulomb three-body system is correct, the mass and the charge difference between 
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than before. JI 

In the  ASACUSA \   Track Detector 
project, studies in this 
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which enables to 
determine the magnetic 
moment of antiprotons 
with much higher 
accuracy than ever 
achieved. 
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FIGURE 7. A possible experimental setup of lifetime 
measurements and laser spectroscopy of pp, pHe+, 
pHe^, etc. 

Among various antiprotonic atoms to be available with the ultra slow p beams, 
protonium is particularly interesting because it is the simplest two body system 
consisting of a particle and an antiparticle with strong interaction. It is noted again 
that a monoenergetic pp is available only with an atomic hydrogen target, the 
density of which cannot be very high. In this respect, a possible alternative of a pure 
two body system is pHe**, the principal quantum number of which could be tunable 
not only with the incident energy of p but also with a He target in excited states. 
Such a two body system in a Yrast state can decay only via slow radiative transitions 
when the external electric field is negligible, and its lifetime can be much longer than 
lusec, i.e., a high resolution laser spectroscopy becomes applicable to protonium 
and/or pHe** for the first time. A sketch of a possible experimental setup to 
measure the formation cross section and to make high precision laser spectroscopy is 
drawn in fig.7. The formation cross section and the («,/) distribution of pp will be 
determined by measuring the time difference between the electron signal and the 
annihilation signal together with the position of annihilation. In the case of Laser 
spectroscopy, again the emitted electron triggers a Laser, which excites one of the 
formed states into a high n state with a much longer lifetime, i.e., a high precision 
spectroscopy of pp can be made via the lifetime measurements. 

ACKNOWLEDGEMENTS 

The author is deeply indebted to J. S. Cohen, K. Ohtsuki, H. Totsuji, G. Ya. 
Korenman, N. Kabachnik, A. Lombardi, and colleagues of the ASACUSA project, 
particularly the trap group members, T.Ichioka, RHigaki, K.Yoshiki Franzen, 
M.Hori, N.Ohshima, A.Mohri, and K.Komaki for their fruitful and vivid discussions. 
The work is supported by the Grant-in-Aid for Creative Basic Research (10NP0101), 

57 



Ministry of Education, Science, and Culture. 

REFERENCES 

1. ASACUSA collaboration proposal, 1997 CERN/SPSC 97-19, SPSC P-307 
2. Knudsen,H., and Reading,J., Phys. Rep.212, 107(1992). 
3. YamazakiJ., et al., Nature 361,238(1993), Morita, N., et al., Phys. Rev. Lett. 72,1180(1994), 
Hayano, R.S.,et al, Phys. Rev. A 55,1(1997). 
4. Condo, G.T., Phys.Lett. 9, 65(1964). 
5. Torii,H.A., et al., Phys. Rev. A   59, 223 (1999). 
6. Feng,X., Holzscheiter,M.H., Charlton,M., HangstJ., King,N.S.P., Lewis,R.A., Rochet,!, and 
Yamazaki, Y, Hyperfme Interactions 109, 145(1997). 
7. Yamazaki, Y, Nucl.Instrum.Methods B154(1999)174. 
8. Mohri,A., et al., Jpn. J. Appl. Phys. 37, 664(1998), and Higaki, H., and Mohri, A., Jpn. J. Appl.Phys. 
36(1997)5300. 
9. Chamberlain, O., Segre, E., and Wiegand, C, Phys.Rev.100 (1955)947. 
10. Lombardi,A., Private communication. 
11. Yamazaki, Y, to be published in the Proceedings of 18,h International Conference on X-ray and 
Inner-Shell Processes. 
12.Tschalaer, C, Nucl.Instrum.Methods 64(1968)237. 
13. Ichioka, T., et al., this proceedings. 
14. Gilbert, S.J., Greaves, R.G, and Surko CM., Phys.Rev.Lett. 84(1999)5032. 
15. Larson, DJ., et al., Phys. Rev. Lett. 57, 70(1986). 
16. Totsuji, H., et al., this proceedings 
17. Huang,X.-R, et al., Phys. Rev. Lett. 78, 875(1997). 
18. Anderegg, R, Hollmann, E.M., and Driscoll, C.F., Phys.Rev.Lett. 81(1998)4875. 
19. Knudsen,H., et al., Phys. Rev. Lett. 74,4627(1995). 
20. Toshima,N., Phys. Lett. A 175, 133(1993). 
21. Krstic,P.S., Schultz,D.R.,and Janev, R.K., J. Phys. B 29, 1941(1996). 
22. Wells,J.C, Schultz,D.R., Gravras.P., and Pindzola,M.S., Phys. Rev. A 54, 593(1996). 
23. Fermi, E. and Teller, E., Phys. Rev. 72, 399(1947). 
24. Andersen,L.H., et al., Phys. Rev. A 41, 6536(1990). 
25. Ullrich,!, et al., Topical Review,! Phys. B 30, 2917(1997). 
26. Schumidt-Boecking, H., et al., Abstract of International Workshop on Atomic Collisions an 
Atomic Spectroscopy with Slow Antiprotons, (Tsurumi, Japan, 1999), and Moller, S.P., 
Nucl.Instrum.Methods A394, 281(1997). 
27. Morishita,T, et al., J. Phys. B 30, 2187(1997). 
28. Kabachnik, N.M., Balashova, L.L., and Trikalinos, Ch., Abstract of International Workshop on 
Atomic Collisions an Atomic Spectroscopy with Slow Antiprotons, (Tsurumi, Japan, 1999), and 
private communications, E.Uggerhoj, Nucl.Instrum.Methods B135(1998)35 
29. Cohen, J.S., Phys. Rev. A 56, 3583(1997), and private communication. 
30. Cohen, J.S. and Padial, N.T., Phys. Rev. A 41, 3460(1990), Cohen, J.S., Phys. Rev. A 36, 2024 
(1987) 
31. Cohen, J.S., to be published in the Proceedings of the XXIth ICEAC (Sendai, 1999) 
32. Ohtsuki, K., Abstract of International Workshop on Atomic Collisions an Atomic Spectroscopy 
with Slow Antiprotons, (Tsurumi, Japan, 1999), and private communication. 
33. Widmann, E.,et al., Phys. Lett. B 404, 15(1997). 
34. Korobov.V!., Phys. Rev. Lett, to be published. 
35. Elander, N., and Yarevsky, E., Phys. Rev. A 56, 1855(1997). 
36. Kino,Y, Kamimura, M.,and Kudo,H., Proc.XV. Int. Conf. Few-Body Problems in Physics, 
Groningen, 1997. 

58 



Multi-ring Trap as 
a Reservoir of Cooled Antiprotons 

T.IchiokaA'C, H.HigakiA, M.HoriB, N.Oshimac, K.Kuroki0, 
A.Mohri0, K.KomakiA, Y.YamazakiA'C 

A
 Institute of physics,    University of Tokyo, 

3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 
B Department of Physics,    University of Tokyo, 

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 
0Atomic Physics Laboratory, RIKEN, 

2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan 
D National Research Institute of Police Science, 

6-3-1 Kashiwanoha, Kashiwa-shi, Chiba 277-0882, Japan 

Abstract. 
For the ASACUSA project, a new charged particle trap was designed and con- 

structed. Like a Penning-Malmberg trap, static electric and static magnetic fields are 
used. Multi-ring electrode is exploited to generate a harmonic potential on the trap 
axis. It enables the confinement of a number of antiprotons and electrons for the elec- 
tron cooling. Upon its design, plasma behavior of trapped particle clouds was taken 
into consideration. 

As the first step, trap performances have been checked with electrons. Current 
status are presented. 

INTRODUCTION 

In ASACUSA project, experiments are planned to investigate initial formation 
processes of antiprotonic atoms, interaction between antimatter and matter etc., 
most of which require ultra-low energy antiproton beams [1-3]. At Antiproton 
Decelerator (AD ; at CERN), 107 antiprotons of 5 MeV will be at hand as a 
pulse of 250 ns with a repetition period of one minute. In our scheme, MeV- 
energy antiprotons from AD will have several tens of keV after passing through an 
RFQ, post decelerator. Those antiprotons enter a Multi-Ring Electrode(MRE) trap 
described in the following section. Then the well-known electron cooling technique 
will be applied. Dense cloud of antiprotons, together with electrons, are supposed 
to behave as a nonneutral plasma. Extraction method is being considered. 

A MRE trap allows the utilization of axially long harmonic potential region. 
Advantages are : 

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al. 
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(a) It ensures longer life times of plasmas than in the case of square potential [4]. 

(b) When the plasma radii are reduced, plasmas can freely accommodate them- 
selves so that their axial lengths are longer, which can reduce a possibility of 
plasma heating up. 

(c) It allows the plasma CM motion which can be used for diagnoses. 

TRAP DETAILS 

Design     In designing the trap, following two points are especially considered : 

1. Preparation of 106"7 antiprotons with sub-eV energy within one minute (the 
value of which comes from the pulse interval at AD). 

2. Extraction of cooled antiprotons from the trap which is located in the strong 
magnetic field. 

As low energy charged particles tend to follow the field line, it is essential to make 
the position of the particles as close to the axis as possible for their extraction as 
a beam. One solution is the application of a rotational electric field, known as a 
"rotating wall method". Such a field can exert a torque on the plasma so that the 
plasma shape can be changed [5,6]. This method is thought to be effective in our 
application and one of the electrodes is segmented for the radial compression of the 
plasma. 

When the plasma composed of electrons and antiprotons is axially compressed 
in this way, it stretches in the harmonic region. It can be noted that the square 
potential does not allow such an axial expansion. To reduce the space potential 
while keeping the cooling power high enough, central harmonic region is elongated 
in the axial direction so that the density will be optimum. Multi-ring structure 
[7,8] is exploited to generate such a harmonic potential. 

Supposing that an antiproton cloud (density np, temperature TP[K]) and an elec- 
tron cloud (density ne, temperature Te[K]) are uniformly mixed at a time t = 0, 
simulations were done to estimate the time necessary for the electron cooling of 
antiprotons. Using cgs units, time evolution of Tp and Te were determined by 
following set of equations 

^ = Vpe(Te-Tp) (1) 

^ = uep(Tp - Te) - TeA (2) 

where A ~     ,^|2 is a synchrotron radiation cooling rate found experimentally 

[8].   Using Boltzmann constant(/c), electronic charge(e), electron mass(rae) and 
antiproton mass(mp), equilibration rates (i^pe, vep) are given by 
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In FIGURE 1 and 2, result are shown. Realistic experimental conditions are 
assumed : B = 5[T], T„(0) = 5.8 x 107[K](= 5000[eV]), Te(0) = 4[K] , Coulomb 
logarithm \ep = \pe ~ 30. For the calculation in FIGURE 1, np = 108[cm 3], ne = 
108[cm-3] were inputted and in the FIGURE 2, np = 108[cm-3], ne = 109[cm 3] 
were used. 
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FIGURE 1. Simulation of electron cooling rate. ; np = 108[cm 3], ne = 108[cm 
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FIGURE 2. Simulation of electron cooling rate. ; np 108[c , ne = 109[cm-3] 

It is seen that electrons initially warmed up by incoming hot antiprotons lose 
their energy via synchrotron radiation and both antiprotons and electrons will be 
cooled below 1 eV within one minute. We may note that the cooling time will be 
longer if consider the anisotropy on the space and the temperature. Cooling time 
is thought to be optimized by adjusting the densities of two species. 
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Experimental Setup In FIGURE 3, shown are electrode configuration and 
schematic trap-cool-dump procedure. The ratio of the axial extent of the harmonic 
region to the radius of electrodes is about 5 times larger than that of a traditional 
Penning trap. 

OD = 38 mm 
ID = 2 mm 

Segmented electrode 

ectrons : 50 - 100 eV    / ' \ 

cold electrons 

Electron spheroidal plasma 

FIGURE 3. Configuration of trap electrodes. Inner diameter of cylindrical electrodes is 40 mm. 

All the electrodes are made of OFHC copper with the machining precision of 
10 ^m and gold plated with the thickness enough to improve the surface property 
while the precision is tolerable. They are aligned on a base plate which is machined 
with the same precision. Insulation is done by pieces of A1N, which is known to be 
a good thermal conductor as well as an electric insulator. 

For the application of rotational rf field, an electrode that is azimuthally seg- 
mented into four identical parts is located next to the one at the center. On one 
end of the trap there is a Faraday cup which serves as a detector for destructive 
diagnosis. It consists of two concentric parts as shown in FIGURE 3. In the future 
when the system is incorporated with the beam line, this part will be replaced 
by an grounded electrode. Two electrodes marked as HV are for the catching of 
energetic antiprotons. 

All the system is installed in a superconducting solenoid. The uniformity of the 
magnetic field is better than ±0.5% within a region of 10 mm(D) x 1100 mm(L) 
and considered to be much better in the trapping region. 

We also have a duoplasmatron ion source which can supply both proton and 
negative hydrogen ion beam. A negative hydrogen ion has a binding energy of 0.74 
eV and can be used to simulate an antiproton in the low energy region. For tests 
like the injection of a high energy beam into the trap, protons will be used. A beam 
line which connects the ion source and the trap is already constructed and tested. 
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RESULTS 

At first, electron trapping experiments were performed. A hot cathode located 
at the position 5cm off axis, in about 1 m from the center of the magnet (B-field 
strength ~ 100G) is used to generate electrons. They were injected into the trap 
as a pulse train. Typical incident energy was 95 eV. Two HV electrodes were not 
used for electron trapping. Instead, two electrodes next to them (F3 and B2) were 
utilized for the initial confinement. 

Trapping potential except the one for the entrance wall was formed before- 
hand(F2 - B2) and, by raising the potential height on the entrance(F3), confinement 
was completed(shown as 1 in the FIGURE 3). After a trapping period, electrons 
were dumped by changing the potential(shown as 2) and detected at the Faraday 
cup. Magnetic field strength was kept at 1 T during all the measurements. 

The life time of electron plasmas was measured to be around 200 sec under the 
base pressure of 5 x 10-9 Torr. 

In FIGURE 4, the effect of rotating electric field is shown. Sweep rate was 
set to be 2 MHz/min. There was shot-by-shot fluctuation in the number of elec- 
trons(about 10 %), which is not shown in the graph. 
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FIGURE 4. Effect of rotating electric field. (A) : with RF, (B) : without RF 
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It was shown that the rotational electric field can compress the plasma and up 
to 60 % of the constituent particles was confined in a region of 2 mm in diameter. 
In addition, the life time of the plasma became longer. It can also be seen that 
the application of too high frequency reduces the fraction of electrons compressed 
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radially. Since the effectiveness also depends on the sweep rate, optimization is still 
necessary. Generation of electrons by ionizing the residual gas was observed when 
the amplitude was too high. 

Observation of radial and axial plasma modes by a spectrum analyzer has been 
also performed by picking signals up from the segmented electrode or one of the 
ring electrodes. When the rotational electric field was properly applied, (2,0) and 
(3,0) mode frequencies increased. 

Injection of negative hydrogen beam was tried, though their plasma oscillations 
have not yet been observed. Electron cooling of them is in progress. 

CONCLUSION 

In a newly constructed Multi-Ring Electrode(MRE) trap, electrons were success- 
fully trapped and electrostatic modes of plasmas are observed. The rotating wall 
method was applied and radial compression was achieved. 

Simulation experiments are being performed with protons(~50keV) and H~ 
ions(~lkeV) from a duoplasmatron ion source. 
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Abstract. The use of a Malmberg-Penning type trap with nested electric potential 
wells to confine overlapping antiproton and positron plasmas for the purpose of produc- 
ing low temperature antihydrogen is studied. Two approaches for confining antiproton 
and positron plasmas with a region of overlap are considered. In one approach the two 
components have a large temperature difference. In the other, one of the components 
is in a nonequilibrium "antishielding" plasma state.1'2 A finite differences algorithm 
is used to solve Poisson's equation based on a simultaneous overrelaxation numerical 
approach.3 Self-consistent numerical results for required trap potentials and possible 
particle density profiles are presented. 

INTRODUCTION 

The possibility of precise tests of CPT invariance and other fundamental symme- 
tries using antimatter has increased interest in the production and confinement of 
cold antihydrogen. Various methods of confining antiproton and positron plasmas 
together to allow for recombination have been proposed [1]. One such proposal is 
to use a Malmberg-Penning trap with nested oppositely signed electric potential 
wells to simultaneously confine the antiprotons and positrons in the same spatial 
region [2]. 

Using a Malmberg-Penning trap, two confined plasma components with equal- 
magnitude oppositely signed charges can have a region of overlap through one of 
two scenarios [3]. An electrode configuration suitable for both scenarios is shown 
in Fig. 1. The difference in potential between the central electrode and the inner 
electrodes produces an electric potential well referred to as the inner well. The dif- 
ference in potential between the central electrode and the outer electrodes produces 
an oppositely signed potential well, referred to as the outer well, which is nested 
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FIGURE 1. A nested electrode configuration. 

about the inner well. In the first scenario for using a nested Malmberg-Penning 
trap for producing antihydrogen atoms, the two temperature approach, both the 
antiproton and positron plasma have a thermal (Maxwellian) velocity distribution. 
To allow for confinement with overlap, it is necessary for one plasma component to 
be significantly hotter than the other. The second scenario allows for the overlap 
to occur with two equal temperature components, provided one of the components 
is in a nonequilibrium plasma state. 

TWO TEMPERATURE METHOD 

If each plasma component is in a local thermal equilibrium, two simultaneous 
requirements exist. Considering antiprotons to be the inner well species, it is nec- 
essary for eA0m/T_ » 1 to have good confinement of the antiprotons along a 
magnetic field line, where e is the unit charge, A<f>m is the inner well depth along 
the field line and T_ is the antiproton temperature in energy units. For the positrons 
to overlap the inner well, eA<f>m/T+ < 1 is required, where T+ is the positron tem- 
perature. It is only possible to satisfy these requirements for T_ «T+. Because of 
this temperature difference, it will be necessary to have the outer well depth much 
larger than the inner well depth to provide similar confinement timescales for both 
species. 

Because the outer well plasma component must be significantly hotter than the 
inner well component, and because it is necessary for the antiprotons to have a 
temperature of approximately 1 K to magnetically confine antihydrogen atoms 
which are produced [1], it would not be feasible to use a two temperature approach 
with positrons in the inner well and antiprotons in the outer well. Using a two 
temperature approach with positrons in the outer well may also present difficulties. 
A positron plasma with a high enough temperature to achieve overlap without 
too much Debye shielding of the inner well does not appear to provide a sufficient 
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recombination rate. The recombination rate decreases significantly as the positron 
temperature increases [1]. 

NONEQUILIBRIUM METHOD 

Figure 2 shows the procedure for altering the applied potential to achieve an over- 
lap of positron and antiproton plasmas with the antiproton plasma in a nonequi- 
librium state. Initially the two components are separated and held at the same 
potential as shown in Fig. 2(a). Then the shape of the external potential is al- 
tered to allow the antiprotons to flow into the nested well. After this occurs the 
antiprotons will be in a nonequilibrium "antishielding" state [4,5], and will have 
a maximum density within the inner well. Eventually the antiprotons will relax 
towards local thermal equilibrium and the two components will separate. Depend- 
ing upon the timescales for recombination and relaxation the process may need to 
be repeated. Initial calculations indicate that recombination will occur on a much 
more rapid timescale than relaxation and only one cycle will be needed to achieve 
recombination of a majority of the trapped antiprotons [6]. 

Positrons Antiprotons 

(a) aaaa 

(br 

Inner Well 

FIGURE 2. Time dependent procedure for establishing an antishielding antiproton distribution, 
(a) Initially the antiprotons are confined outside the nested well, (b) The electric potential barrier 
keeping them out of the nested well is removed, (c) The outer well asymmetry is removed such that 
the nested well profile is produced with the antiprotons trapped within the outer well. Initially 
the antiprotons will move through the end wells quickly so that their density there is smaller than 
in the inner well. Eventually the antiprotons will relax toward a Boltzmann density profile and 

become trapped in the end wells. 

The density profile of the antiprotons along a magnetic field line immediately 
after their introduction into the nested well is given by [7] 

i_ = n0_ev'-erfc[Re(vAi/'-)] (1) 
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where n0_ is the density of the antiprotons on that field line at z = 0, the axial 
midplane, and ^»_ = e[(j>{z) - </>(0)]/T_ is the normalized potential energy of the 
antiprotons. This distribution is characterized by a maximum density at locations 
at which ^_ = 0. The density is actually lower within the two end-well regions, 
where the antiprotons would be most prevalent if they followed a Boltzmann density 
distribution. 

The results for a two-dimensional self-consistent calculation of a trap with an 
antiproton plasma in the antishielding state is shown in Fig. 3. The trap dimensions 
are L0 = 14 cm, L\ = 1.5 cm, L2 = 1.5 cm and rw = 1 cm, where rw is the inner 
radius of an electrode. The voltages are V0 = 0, Vx = 4 V, and V2 = —6 V. The 
midplane radial profile used at z = 0 is h(r) = 1 - (2r/rw)a for 0 < r < rw/2, where 
a = — 2.3/ln(l - XD/^W) [3]. Plasma parameters used are n0+(r = 0) = 1013nT3, 
n0_(r = 0) = 109nr3, T+ = 0.1 eV, T_ = 0.0001 eV (« 1 K) where n0±(r = 0) 
is the density of the positrons/antiprotons at the geometric center of the trap. 
The high positron temperature is chosen for computational reasons only. As the 
temperature of the positrons decreases the Debye length decreases and the number 
of computational grid points required to do the calculation increases. However, the 
voltages used are large compared to the positron temperature, and the positron 
density will fall to zero at roughly the same axial and radial positions. These 
results are expected to be independent of the positron temperature for T+ <C A0m. 

Figure 3(a) illustrates axial confinement of the positron plasma. For z > 7 cm, 
which is where the center electrode is not present, the positron plasma density 
becomes negligible. Figure 3(b) illustrates an antiproton plasma that follows the 
density profile described by Eq. (1). Because eA</>m » T_, the antiproton density 
in the inner well is much larger than in each end well. It should be noted that the 
resolution of the plot is insufficient to show a spike in the density that occurs at 
around z = 8.5 cm where the potential passes through a zero point. Figure 3(c) 
shows the electric potential profile. Along the inner surface of the electrodes (at 
1" = ru>), the potential has a square nested-well appearance. This occurs because 
in the calculation the separations between electrodes are set equal to the grid 
spacing. Along the axis of the trap (at r = 0), the potential is much smoother as 
expected. Within the central electrode, the space-charge of the positron plasma 
raises the potential along the axis to about 1.36 V. The voltage V\ had to be chosen 
larger than the positron plasma potential so that A</>m was sufficient to confine the 
positrons. With Vx = 4 V, A(f>m = 1.59 V along the axis and A<pm = 2.6 V at 
r = rw/2. 

In the antishielding state, the antiprotons can be considered to comprise two 
counter-streaming antiproton "beams" within the end wells. The average axial 
speed and density of antiprotons in an end well can be calculated using Eqs. (2) 
and (3) of Ref. [7]. The relative velocity between the beams is twice the average 
axial speed or, 

Vrel = 
7rßerfc (v^w) 
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for a nested well plasma trap with positrons in the inner well, and antiprotons in an antishielding 

distribution. 

where tpm = eA<jf>m/TL is the normalized well depth, ß = m_/(2T!_), and m_ is the 
antiproton mass. The density for one beam is half the total density in the well or, 

ribeam = -Tln-e^erfc Utp, 

One thing that should be considered for a plasma in an antishielding state is the 
possible occurrence of the two-stream instability. The condition for the two-stream 
instability to occur is (c.f. Ref. [9]) 

L> 
ITVrei 

(   2/3   .      2/3\ 3/2 

where wpi and up2 are the angular plasma frequencies for each counter-streaming 
beam, respectively. For the antiprotons, 

^pl — ^p2 — e 
nbe, 

e0m_ 

In consideration of the above parameters, it is easy to find that the antiprotons in 
the end wells are not subject to the two-stream instability. 
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CONCLUDING REMARKS 

An initial analysis of the problem of confining antiprotons and positrons in a 
nested well trap at parameters suitable for producing cold (sa 1 K) antihydrogen 
has been performed. The results indicate that a region of overlap between the two 
plasma components can be achieved by preparing the outer well plasma component 
in an "antishielding" state. After initially preparing the antihydrogen plasma in an 
antishielding state, the plasma will gradually relax to a Maxwell-Boltzmann phase- 
space distribution. If the positron plasma is not present, the temperature of the 
relaxed antiproton plasma would be Tfinal = (2/3)eA0m + Tinitial. However, with 
the presence of a positron plasma having a heat capacity much larger than that of 
the antiproton plasma, the positron temperature can be expected to remain roughly 
constant, and the final temperature of the antihydrogen plasma will approach the 
temperature of the positron plasma (with the two species separating). During the 
antiproton plasma relaxation, the antiproton plasma in the overlap region can be 
expected to remain in collisional thermal equilibrium with the positron plasma [6]. 
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Abstract. In the work reported, time-dependent effects are considered which affect 
the prospect of getting two oppositely signed plasmas to overlap the same region while 
trapped within a solenoidal magnetic field. Parameters that are relevant to future 
experimental attempts at producing cold antihydrogen atoms using nested-well plasma 
traps are considered. It is found that the timescale over which an overlap remains, 
without changing the electrode voltages, can be much larger than the timescale over 
which the overlap plasma recombines. Hence, it does not appear necessary to use 
time-dependent electrode voltages to maintain the overlap while antihydrogen atoms 
are being produced. 

INTRODUCTION 

Different field configurations can be used for confining nonneutral plasmas. Con- 
figurations that consist of a solenoidal magnetic field for providing radial plasma 
confinement and an electric field produced by cylindrical electrodes for providing 
axial confinement have been called Penning traps and, more recently, Malmberg- 
Penning or Penning-Malmberg traps. Malmberg-Penning traps are typically config- 
ured to produce a single electric potential well in order to provide axial confinement 
for a nonneutral plasma consisting of charged particles having the same sign [1]. 
In theory, such traps can also be used to confine oppositely signed plasmas within 
regions that overlap [2-4]. A suitable axial electric potential profile is illustrated 
in Fig. 1. The electric potential provides an "inner well" for confining positive 
plasma particles (e.g., positrons) and an "outer well" for confining negative plasma 
particles (e.g., antiprotons). (For convenience, the term "plasma" is used here re- 
gardless of whether each plasma species is capable of providing Debye shielding.) 
Under three scenarios, the negative plasma species extends through the inner well 
to overlap the positive plasma species [3].   In the first scenario, the oppositely 
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FIGURE 1. Illustration of an electric potential profile having a nested-well configuration. 

signed plasma species are at widely different temperatures with the hotter plasma 
species confined by the outer well. The second scenario requires the positive plasma 
particles to have high charge states. In the third scenario, the plasma in the "end 
wells" is maintained in a nonequilibrium plasma state. The possibility of producing 
an overlap using the first scenario has been investigated experimentally [5]. With 
sympathetic cooling observed to occur between oppositely signed plasma species, 
the presence of an overlap region has been inferred [5]. In the study reported here, 
the third scenario is considered and associated timescale issues are identified. To 
guide the study, use of nested-well traps for producing antihydrogen atoms is con- 
sidered. For the analysis, antiprotons are considered to be trapped within the outer 
well and to overlap a position plasma trapped within the inner well. 

ONE-DIMENSIONAL DESCRIPTION OF 
ANTIPROTON PLASMA 

In the present section, the problem is considered in one dimension and the number 
of antiprotons that overlap the inner well is assumed to be much larger than the 
number within the end wells. Suppose that with suitable choices for the applied 
electrode voltages, any of the three axial electric potential profiles illustrated in Fig. 
2(a) can be produced by the end-well electrodes. Assume that the potential profile 
corresponding to curve 1 is initially produced and that a collisionless antiproton 
plasma having a Maxwellian velocity distribution with temperature T is stored 
within the trap. If the potential profile is suddenly switched to the nested-well 
configuration, curve 2, on a timescale short compared to the antiproton transit 
time across the end well, the axial antiproton density profile will be given by 

= rio-e^erfc Re KM (1) 

where n0_ = n_(z = 0), ip = e[(j>(z) — <p(0)]/(kBT) is the electric potential normal- 
ized to the plasma temperature, e is the unit charge, kB is Boltzmann's constant, 
erfc is the complementary error function and Re takes the real part of its argument. 
Equation (1) applies both inside and outside of the end well. It corresponds to Eq. 
(1) of Ref. [6] for ip > 0 and to the Boltzmann relation for ip < 0. The density 
profile described by Eq.  (1), which is illustrated as curve 4 in Fig.  2(b), occurs 
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FIGURE 2. Illustrations of normalized electric potential profiles (a) and normalized antiproton 
density profiles (b). The conditions under which the density profiles occur are described in the 

text. 

when a collisionless Maxwellian plasma is allowed to flow into an initially empty 
potential well such that energy and momentum carry plasma particles through the 
well without becoming trapped within the well. Because the axial speed of the 
plasma particles is larger inside the well than outside of it, the density is smaller 
inside the well. Consequently, a nonneutral plasma that follows Eq. (1) and causes 
an increase in the well depth can be said to "antishield" the well [6]. Hereafter, the 
term "antishielding state" will be used to describe a nonequilibrium plasma state 
associated with a density profile that follows Eq. (1). 

Now assume that the potential profile corresponding to curve 3 is initially pro- 
duced and that an antiproton plasma is stored within the trap. This time if the 
potential profile is switched to the nested-well configuration (curve 2), the antipro- 
ton density within the end well will have a contribution associated with antiprotons 
that flow through the end well without becoming trapped plus a contribution from 
antiprotons that are trapped in the end well as the transition in the potential profile 
occurs. The antiproton density within the end well will be [6], 

= n0_ (e^erfc Be(yfi\   +erf KeCfi) (2) 

if the potential is switched during a time period short compared to the antiproton 
transit time across the end-well length, or, for a long time period [6], 

n_ = n0_ (e^erfc Re (yfi\   +2Re yfi/ir (3) 

where erf is the error function. Equations (2) and (3) are illustrated as curves 5 and 
6, respectively, in Fig. 2(b). For curves 4 - 6 in Fig. 2(b), the density remains within 
a factor of 10 of the value at z = 0. In comparison, the density for an antiproton 
plasma that follows the Boltzmann relation [not shown in Fig. 2(b)], n_ = n0_e^, 
would reach a maximum value more than eight orders of magnitude larger than 
the value at z = 0. Also shown in Fig. 2(b), as curve 7, is the normalized density 
profile for a positron plasma that follows the Boltzmann relation: n+/n0+ = e~^. 
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The density profiles described by Eqs. (1) - (3) axe transient with collisions driv- 
ing the antiproton plasma toward a Boltzmann distribution. To characterize this, 
consider a time scale, rc, defined as the time required for the antiproton density 
in an end well to increase by some fraction of the density at z = 0. Also con- 
sider a second time scale, rQ, defined as the antiproton transit time across the end 
well. In consideration of the experimental observations reported in Ref. [7] (e.g., 
an antishielding relaxation timescale that was considerably larger than the colli- 
sion timescale associated with the plasma before the antishielded well was formed) 
and the calculations of rc and ra reported in Ref. [2], it is reasonable to consider 
TC » ra. On the basis of this difference in timescales, it is possible to develop a 
time dependent approach for confining two oppositely signed plasma species (e.g., 
antiprotons and equal temperature positrons) that overlap the same region. A 
three-step switching process has been analyzed in detail (see Ref. [2]) and schemes 
using moving potential barriers have been studied experimentally [8]. 

An important characteristic of an antiproton plasma that follows Eq. (1), (2) or 
(3) is that within the inner well, the antiproton plasma has a Maxwellian velocity 
distribution and can be in collisional equilibrium with a higher density (and higher 
heat capacity) positron plasma. Furthermore, the number of antiprotons that oc- 
cupy the end wells and are associated with a non-Maxwellian velocity distribution 
can be much smaller than the number associated with a Maxwellian velocity distri- 
bution. In addition, for an antiproton plasma that follows Eq. (1), the antiproton 
density within an end well can be much less than that within the inner well. For 
example, at a location in the end well where V = 30 the antiproton density is an 
order of magnitude less than that at tp = 0. 

TIMESCALES FOR AN ANTIHYDROGEN PLASMA 

In this section, various timescales are calculated for an antihydrogen plasma 
within the inner well of a nested-well trap. The following parameters are considered 
equal temperatures for each species, T = 1 K; a uniform magnetic field, ß = 5T 
a positron density, n+ = 5x 1013 m~3; an antiproton density, n_ = 5 x 1010 m~3 

an end-well length, Lew = 1 cm; and an inner-well depth, A0m = 1.5 V. 
A significant overlap of equal-temperature positron and antiproton plasmas is 

assumed with antiprotons in an antishielding state. A simple procedure that can 
be used to prepare the antiproton plasma in an antishielding state is described in 
Ref. [9]. An antishielding state will last a limited time because collisions will force 
a nonequilibrium state to relax to a thermal equilibrium state. The population of 
antiprotons will gradually move from the inner well to the end wells. Therefore, 
the timescale over which an effective overlap can remain with constant electrode 
potentials is of the same order as the relaxation timescale TC from the antishielding 
state to a thermal equilibrium state. 

Another important timescale TT describes the recombination rate of antihydro- 
gen.   If TT « rc, then a single overlap with constant electrode potentials can 
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recombine most of the antiprotons. Two recombination reactions for forming an- 
tihydrogen from free antiprotons and positrons are spontaneous radiative recombi- 
nation SRR and three-body recombination TBR. The SRR reaction rate coefficient 
aSRR for a i K antihydrogen plasma can be found in Ref. [10]. The associate 
timescale is T

SRR
 = l/(aSRRn+) — 102 s. The TBR reaction rate coefficient can 

be expressed as [11], aTBR = 6 x 10-24(4.2/T)9/2n+. This recombination rate per- 
tains to zero magnetic field. For infinitely high fields, the rate will be an order of 
magnitude less [12]. So the TBR timescale TT = l/{aTBRn+) is estimated to be 
TT = 1CT7 — 10-6 s for T = 1 K. Although atoms produced by three-body recombi- 
nation are in highly excited states, collisional de-excitation may occur sufficiently 
fast to avoid field ionization of the. atoms [13]. 

If there are no collisions, an antiproton of any velocity that goes into an end 
well will come back out to the inner well, and the antishielding state will last 
forever. However, collisions cause antiproton trapping in the end wells. Assuming 
the parallel energy loss is Aex for an antiproton during one cycle of motion through 
an end well, if the antiproton's parallel energy is below Aex traveling into the end 
well, the particle cannot return to the inner well, and it becomes trapped in the 
end well. The antishielding relaxation time is the timescale for a significant number 
of anitprotons to become trapped in the end wells. It is possible to calculate the 
average energy decrease (Aex) based on stopping power theory [2], 

(A.) - L-'"- j£*i^]'h (l + f^f       \        (4) 
256e^ßT ^      e6ß2 [eV'-erfc (v^)] / 

where ipm = eA^m/(ÄßT), m is the antiproton mass, and e0 is the permittivity of 
free space. For the parameters above, the average energy decrease is Aex = 10-30 

J. This means that only those antipostrons in the inner well with parallel energy 
below Aex become trapped in an end well. 

With the average energy decrease Aex, it is possible to calculate the relaxation 
time by assuming that the antiproton plasma in the inner well keeps a Maxwellian 
velocity distribution. So the inner well is like a plasma source which constantly 
emits antiprotons with a Maxwellian velocity distribution, at the edge between the 
inner well and an end well. The relaxation time is estimated by [2], 

LewJirm/{2kBT) 

2erf (^(Ae.) /(kBT)) 

For the above parameters, the relaxation time is rc = 0.2 s. This timescale assumes 
that the antiproton plasma in the overlap region relaxes to a Maxwellian velocity 
distribution faster than the rate at which the velocity distribution is deformed 
due to loss of antiprotons to the end wells. If not, then the rate at which the 
antiproton plasma relaxes to a Maxwellian velocity distribution in the inner well 
will determine the rate at which the antiprotons become trapped in the end wells. 
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An estimate of the rate at which the antiproton plasma relaxes to a Maxwellian 
velocity distribution in the overlap region is assumed to be the collision time for 
90° scattering, which is 2 x 10~6 s for the above parameters. Consequently, the 
antiprotons will remain in a collisional thermal equilibrium with the positrons in 
the inner well. 

CONCLUDING REMARK 

With the above calculations, it is found that TT « TC. For the same parameters 
but considering the temperature to be 10 K, the antishielding relaxation timescale 
is TC = 0.1 s, while the recombination timescale, which is TT = 10~3 — 10-2 s, 
increases about 4 orders of magnitude. Nevertheless, the relation TT « TC still 
holds. Because of this, most of the antiprotons can recombine with positrons to form 
antihydrogen during the time the antiproton plasma relaxes from an antishielding 
density distribution given by Eq. (1). Hence, it does not appear necessary to 
maintain the overlap using time-dependent electrode voltages during the time the 
antiproton plasma relaxes. 
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Abstract. The behavior of the two-component nonneutral plasma in the Penning- 
Malmberg trap is analyzed by simulations and theoretical approaches. The parameters 
expected in experiments of antiproton cooling by electrons are assumed. The relaxation 
of antiproton energy is followed by the rate equation with proper account taken into 
account for the slow transfer of energy between parallel and perpendicular components 
of strongly magnetized electrons. The equilibrium distribution of each species are 
obtained by molecular dynamics simulations for various values of parameters and the 
results are reproduced by theoretical calculations to a good accuracy. The condition 
for the centrifugal separation is obtained. 

INTRODUCTION 

Systems of charged particles in traps are one of typical and simple examples of 
strongly coupled nonneutral plasmas and clear observations of various properties 
of plasma have been made on classical one-component plasmas in the Penning- 
Malmberg or Paul traps [1]. The assembly of trapped charged particles can be 
also used to host other particles. The cooling of high energy particles by cryogenic 
plasmas in the trap is one of such applications [2,3]. Here the behavior of multi- 
component plasmas in the trap is of essential importance. In this paper, we analyze 
relaxation processes and the thermal equilibrium in multi-component plasmas in 
the Penning-Malmberg trap, assuming the case of electrons and antiprotons when 
necessary. 

We consider the cylindrical Penning-Malmberg trap with the uniform magnetic 
field in the ^-direction B = Bz and denote the coordinates of particles r as (R, 6, z). 
In thermal equilibrium, trapped particles perform a solid rotation around the z-axis. 
The Hamiltonian in the coordinate frame rotating with u is given by H = H0-CJMZ, 

where Mz is the z-component of total canonical angular momentum, and rewritten 
into the form H = H^ + \ £i fcjÄ?, where 
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I E kiRl = -\o> J2(liB + mr^Rl (1) 

and H'0 has the same form as the Hamiltonian for particles in the rest frame [4]. 
The term (1) in H serves as a potential which confines particles around the z-axis. 

When we have several species of charged particles in the same trap, the confining 
potential for the species a is given by \kaR

2, where 

kQ — -u(qaB + maw). (2) 

For electrons (suffix e) and antiprotons (suffix p), qa = -e < 0, and the Hamiltonian 
in the rotating frame is given by 

H = H'Q + lu>    £   (eB - meu)R* + L     £     (eB - mpw)/2?. (3) 
electrons antiprotons 

For confinement of both species, u> > 0, and it is also necessary to have io{eB 
rripUj) > 0. 

PARAMETERS 

Here we list typical values of parameters expected in experiments to cool an- 
tiprotons by cryogenic electrons trapped in the Penning-Malmberg trap. 

magnetic field B 5T 
trap length 1 ~ 10 cm 
trap radius 0.1cm 

electron density ne 109cm-3 

antiproton density np 107 ~ 109cm-3 

electron temperature Te 10K 
electron solid rotation U)e 105 ~ lOV1 

electron Debye length 
electron mean distance 

electron cyclotron radius 

(e0kBTe/nee
zy<2 

{3/4irney/3 

2-irvth,e/{eB/me) 

7-10-4cm 
6 • 10-4cm 
9 • 10_6cm 

The Coulomb coupling constant for electrons is given by Te = e2/4.weoackBTe = 
3 • 10_1. We have an inequality for length scales 

electron cyclotron radius <C electron mean distance 

<C antiproton mean distance <C antiproton cyclotron radius. (4) 
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RELAXATION PROCESSES 

Let us now consider the relaxation of energy of antiproton beam parallel to the 
magnetic field introduced into cryogenic electrons. This relaxation occurs in three 
steps; from the antiproton beam (parallel component) to the parallel component 
of electrons, from parallel to perpendicular component of electrons, and from per- 
pendicular component of electrons to cyclotron radiation. 

When antiprotons are impinging cold electrons with the velocity vp\\, the loss rate 
of parallel energy is estimated by moving to the frame where the antiproton is at 
rest and the electron is coming with the velocity -vp\\ from z = oo. In the strong 
magnetic field, the drift approximation may be applied [6]. In this approximation, 
electrons within the impact parameter 

e2/47re0(me/2)t;J11 (5) 

are reflected and those with the impact parameter larger than the above make a drift 
motion around the antiproton and eventually move to z = -oo. The perpendicular 
energy E±_ is an adiabatic invariant. 

Estimating the frequency of collisions with the impact parameter smaller than 
(5), we have 

^„ = -1^,,      I.^nJ/-)2-^^)172. (6) 
dt   p"        n   p|"      TI V47r£o/   TraJ/2£$|   ^mey 

We have performed simulations on the two-body problem in strong magnetic field 
and confirmed the validity of (5), obtaining a numerical factor of N(l) . 

In strong magnetic field where cyclotron radius is smaller than the close collision 
radius, parallel and perpendicular components of energy of electrons relax sepa- 
rately to the Maxwell distributions with different temperatures: The relaxation 
between these components is a slow process limited by the many-body adiabatic 
invariance [7-9]. The relaxation time for the latter is written as 

l^-icr«-™  I.,(5^)'(^),/V,.    en 
where /(re) is a function of 

eB      2e2       (kBTe^   1/2 

me4TT£0kBTe\\ \me/2 
(8) 

For ne = 109cm"3, Te„ ~ TeX ~ 10K, and B = 5T, re = 1.7 • 102 and r2 
l - 10°s l. 

The last process is the cyclotron radiation from electrons given by 

^ = -^x      ±—£& (Q) 
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This process is determined only by the magnetic field and r3 ~ 9.7s for B = 5T. 
For the values of parameters described above, the time development of the each 

component of energy is followed numerically. Some examples are shown in Fig. 
1. We observe that the input of the energy from the antiproton beam is shared 
equally by the all degrees of freedom and then cooled by radiation with a rather 
long time scale r3. The slow relaxation between the parallel and perpendicular 
components of electrons in strong magnetic fields leads to the overshooting of the 
parallel temperature before equipartition. The effect on the overall relaxation, 
however, is small and may be virtually negligible: The time scale r3 is too long to 
observe this effect in the final results. For smaller electron densities, the time scale 
for relaxation of antiproton energy naturally increases as indicated by the factor ne 

in inverse relaxation time. 

EQUILIBRIUM DISTRIBUTION 

Let us now assume that electrons and antiprotons are in thermal equilibrium 
and look into their distributions. We have simulated our system by the constant 
temperature molecular dynamics and analyzed the results on the basis of our the- 
oretical approach which has been successful for the case of single component. 

Molecular Dynamics Simulation 

The distribution in thermal equilibrium depends on the frequency of solid ro- 
tation u), the temperature expressed in terms of the coupling constant T, and the 
ratio of densities np/ne. For some examples of parameters, the distribution of each 
component is shown in Fig. 2. We observe that when the frequency of solid ro- 
tation is large and the temperature is low, there exists clearly separated shell of 
antiprotons. The position of the antiproton shell is plotted in Figs. 3a and 3b as a 
function of the solid rotation frequency together with the outer radius of electron 
distribution. 

Theoretical Analyses 

Without antiprotons, electrons form a cylinder composed of many concentric 
shells at low temperatures. When antiprotons are introduced, they will seek the 
minimum of the sum of the electrostatic potential due to electrons <pe, confining 
potential for antiprotons, and their mutual interaction. Regarding electrons as 
continuum, we have for <f>e 

-e2^-—- + const     (R<Re), -e2—^-In # +const     (R>Re),     (10) 
Z£Q   2 27T£o 
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FIGURE 2. Examples of equilibrium distribution of electrons (dots) and antipro- 
tons (crosses) observed along the magnetic field. 
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where Ne is the line density of electrons and Re is the radius of electron distribution. 
Their mutual interaction may be calculated as a sum of the continuum limit and 
the two-dimensional correlation energy. Since, outside of electrons, the electrostatic 
potential of average electron distribution can be evaluated by collecting electrons 
to the axis, this is an extension of our previous results for one-component system 
with an central electrode [10]. 

The results of theoretical analyses are shown also in Figs. 3a and 3b. We observe 
that theoretical results almost reproduce simulations. In the case of np/ne = 1, 
all of antiprotons cannot be accommodated in the outer shell and some are mixed 
with electrons thus increasing the radius of electron distribution. 

CONCLUSION 

The two-component nonneutral plasmas in the Penning-Malmberg trap have been 
analyzed by molecular dynamics and theoretical approach. The energy equilibra- 
tion process and the equilibrium distribution have been obtained and the conditions 
for the centrifugal separation are clarified. The equilibrium distribution is almost 
reproduced by theoretical approach. 

This work has been partly supported by the Grants-in-Aid for Scientific Research 
(B)08458109 and (B) 11480110 from the Ministry of Education, Science, Sports, and 
Culture of Japan. 
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FLUID AND KINETIC STUDIES 



Characteristics of Two-Dimensional 
Turbulence That 

Self-Organizes into Vortex Crystals 

Dezhe  Z. Jin and Daniel H. E. Dubin 
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Abstract. 
Experiments have found that freely relaxing turbulence in inviscid, incompressible 

two-dimensional Euler flows can self-organize into ordered structures - vortex crystals, 
in which a number Nc ~ 2 - 20 of strong vortices form stable geometrical patterns in 
a low vorticity background. In this paper we show that Nc can be roughly predicted 
from the flows in the early stage of the turbulence relaxation. 

Turbulence in inviscid, incompressible, two dimensional (2D) fluids is applicable 
to large scale geophysical and astrophysical flows. These fluids evolve according to 
the 2D Euler equations: dtw + v • Vu = 0, u> = z • V x v, where v(r, t) and w(r, t) 
are the velocity and vorticity fields of the flow, respectively, and z is the unit vector 
perpendicular to the plane of the flow. The velocity and the vorticity are related 
via the stream function i/j(r,t): v = V x ipi, V2ij) = -w. 

Over the years, numerical simulations and experiments have found that, from 
a large variety of unstable initial conditions, 2D Euler flows quickly organize into 
large numbers of strong vortices (intense patches of vorticity) and a filamentary, 
low vorticity background. Subsequently, the turbulence is dominated by the chaotic 
mutual advection of the strong vortices and mergers of like sign strong vortices. The 
merger of the strong vortices occurs when two strong vortices come close to each 
other, and often goes on until only a single strong vortex or a pair of opposite 
signed strong vortices remains [1,2]. 

However, experiments with a magnetized pure electron column have discovered 
that 2-20 strong vortices can remain in the relaxed states of the 2D turbulence. 
Moreover, the vortices settle down to geometric equilibrium patterns in a low vor- 
ticity background, which last about 104 rotations of the flow, until the strong vor- 
tices are dissipated by non-ideal effects. These equilibrium states are called vortex 
crystals [3,4]. 

Experimentally, the formation of the vortex crystals depends on delicate control 
of the initial vorticity distribution of the flow. Slight variations of the initial con- 
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dition can result in vortex crystals with different numbers of strong vortices, and 
from some initial conditions, no vortex crystal forms. 

In this paper we show that the formation of vortex crystal and the number 
Nc of the strong vortices remaining in them can be roughly predicted from the 
characteristics of the turbulent flows in their early stages of evolution. We will 
focus on flows with single sign of vorticity, subject to a free-slip circular boundary. 

Our analysis relies on the following physical picture, supported by recent vortex- 
in-cell simulations [5]. Vortex crystals form because of the interaction between 
the strong vortices and the low vorticity background. While advecting chaotically 
and merging occasionally with each other, the strong vortices ergodically mix the 
background, causing the fluid entropy of the background to increase. The mixing 
of the background, in return, "cools" the chaotic motions of the strong vortices 
and leads to the formation of vortex crystal states. The physics of cooling, while 
quite complex, is similar in spirit to that of a marble rolling across the floor: the 
marble slows to a stop because the entropy of the floor is increased, implying an 
irreversible flow of energy from the marble to the floor. 

This mechanism of vortex crystal formation is verified by the close agreement 
between the observed vortex crystal states and the predictions of regional maximum 
fluid entropy (RMFE) theory [6], which calculates the maximum fluid entropy states 
of the background. Given the conserved quantities of the flow and the number of the 
strong vortices as well as their vorticity profiles, the theory predicts the equilibrium 
patterns of the strong vortices and the coarse-grained vorticity distribution of the 
background. The predictions compare very well with the observed vortex crystals. 

Quantitatively, this physical picture suggests that if the average time rm between 
merger events becomes longer than the average time rc for cooling the chaotic 
motions of the strong vortices, merger stops and a vortex crystal forms. Then, by 
estimating rm and rc from the turbulent flow, we are able to predict the formation 
of the vortex crystals and the number of the strong vortices in them. 

We estimate rm from the time evolution N(t) of the number of the strong vor- 
tices in the early stage of the turbulent evolution. Numerical simulations [1] and 
experiments [2] have found that N(t) evolves according to a power law: 

N(t) = N(to)(ty\ (!) 

where £ > 0 is a constant. Other quantities associated with the strong vortices also 
evolve in time according to power laws. For example, the average circulation of the 
strong vortices, Ta(t), increases in time as 

ra(t) = ra(t0)[£),'\ (2) 

where rj > 0 is a constant. Although there are some heuristic arguments for the 
power law behavior of N(t) [8], this behavior remains as an empirical fact. The 
punctuated scaling theory, which is based on a merger model that conserves the 
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total energy and the maximum vorticity of the strong vortices, suggests that f = 
0.70 ~ 0.75, and r? = 0.5 [7]. Although the theory is supported by some numerical 
calculations [9] and experiments done with a thin stratified layer of electrolyte [10], 
experiments that observed vortex crystals [3] have shown that these exponents 
can take different values in different flow evolutions. In this work, we take Eqs. 
(1) and (2) as empirical laws, and measure the exponents from experiments and 
simulations. 

The time scale rm between mergers is given by the time required for the number 
of the strong vortices to decrease by one: AN = -1. For large N, AN/rm = 
-l/rm « dN(t)/dt = -?iV(to)(*/*o)"1-e/*o, where in the last step Eq.(l) is used. 
Therefore, 

(-!)_     to      '*^+e 

,m~ f ~wo)D ' (3) 

To estimate the cooling time scale rc, we recall that mixing of the background 
increases the fluid entropy of the background and drives the strong vortices towards 
equilibrium patterns. As the background is mixed and the strong vortices approach 
equilibrium positions, it becomes unlikely that a fluctuation will drive the two 
strong vortices sufficiently close together to merge. Therefore, we estimate rc as 
the time scale to mix the background. 

The mixing in turbulent fluids is in general very complicated and hard to analyze. 
However, chaotic advection, or the chaotic motion of passive scalars in a prescribed 
flow that retains the essence of the turbulent flow, can often provide insights into 
the nature of the turbulent mixing [12]. In our case, since the strong vortices, 
which are intense in vorticity and small in radius, are the primary mixers of the 
background, we can study the chaotic advection of passive scalars in the fields of 
point vortices to understand the mixing of the background. 

The velocity of a passive scalar in the flow field of N point vortices is given by 
dx/dt = dtpv{x,y,t)/dy, dy/dt = -dipv{x,y,t)/dx, where il>v{x,y,t) is the stream 
function due to the point vortices and depends on time due to the motion of the 
point vortices. Observe that ipv can be regarded as the Hamiltonian for a particle 
in one dimensional motion, with x(t) and y(t) being the generalized coordinate and 
momentum. Then the trajectory of the passive scalar is the phase space trajectory 
of the particle. The Hamiltonian structure for the motion of the passive scalar 
enables us to apply many results from the study of the dynamical systems to the 
chaotic advection problem [12]. 

If the point vortices are in equilibrium positions, tpv is time independent in the 
rotating frame of the equilibrium. Then, the trajectory of the passive scalar is 
integrable and non-chaotic. The trajectory can go around one of the point vortices, 
or a number of them, depending on the initial position. The initial positions for 
different types of trajectories are separated by separatrices. On the other hand, 
if the strong vortices are completely out of equilibrium, their motions are chaotic. 
Then the trajectory of the passive scalar is also chaotic starting from all of the 
initial positions except those very close to the strong vortices [13]. 
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The trajectory of a passive scalar is chaotic if its Lyapunov exponent A is positive, 
non-chaotic otherwise. The Lyapunov exponent of a trajectory is defined in terms 
of the difference 6r(t) = Ti(t) — r2(i) of two infinitesimally close trajectories, Ti(t) 
and r2(t): A = lim^ln |<Jr(t)|/|Är(0)|/t. 

A collection of passive scalars occupying a small region in the stochastic region 
will spread out over the whole chaotic region exponentially in time. The rate of 
this complete randomization is given by the average of the Lyapunov exponents 
of the passive scalars in the chaotic region, since the Lyapunov exponents are the 
rates of the exponential divergence of trajectories of passive scalars initially placed 
closely. 

It is difficult to obtain an analytic value for the average Lyapunov exponent X in 
the stochastic region. However, when the point vortices have approximately equal 
circulations and their motions are chaotic in a region of area A, the main physical 
quantities that determine Ä is the average circulation Fa of the point vortices and 
the average distance D = \JA/N between the nearby point vortices. Dimensional 
analysis then gives 

A * a& = QT' (4) 

where a is a constant, and TT = JVTQ is the total circulation of the point vortices. 
To check the validity of Eq.(4), we have calculated Ä, with the method proposed 

in Ref. [14], in the field of N point vortices with circulations Air. The point vortices 
are randomly placed initially in a circular region. We vary both N (5 ~ 50) and 
the radius of the circular region (0.2 ~ 0.8). The result confirms Eq.(4), with 
a ta 0.031. 

With the estimation of the Lyapunov exponent for the passive scalars in the fields 
of the point vortices, the complete randomization time of the background can be 
estimated as 

1 

A      aTi (5) 

where A is now identified as the area occupied by of the background flow, and IV 
as the total circulation of the strong vortices. 

To show that TC as given in Eq.(5) is indeed the time scale on which the mergers 
of the strong vortices tend to stop, we have performed several vortex-in-cell simula- 
tions, an example of which is shown in Fig.l. In the simulation, five identical point 
vortices with total circulation 0.5 are randomly distributed within a ring vorticity 
with inner radius 0.4 and width 0.05. The total circulation of the flow is 1. In 
Fig.l, we plot the flow evolution as well as the evolution of the minimum distance 
between the point vortices. For the flow, TC = 32.43 as evaluated by Eq.(5), with 
A = 0.427T. This value is indicated with an arrow in the figure. The figure shows 
after t = rc, the lower limit for the minimum distances steadily increases, and close 
encounters between the point vortices are prohibited. 
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FIGURE 1. A vortex-in-cell simulation in which five identical point vortices with total circu- 
lation 0.5 randomly distributed in a ring vorticity with inner radius 0.4 and width 0.05. The 
total circulation of the flow is 1. The flow evolution is display on the top rows. In the figure, the 
minimum distance between the point vortices is plotted against time. The arrow in the figure 
indicates the complete randomization time rc as evaluated by Eq.(5), with A = 0.4?ir. 

The randomization time rc depends on the total circulation of the strong vortices, 
which decreases as the strong vortices merge. From Eqs.(l) and (2), we obtain 
TT(t) = N{t0)ra{t0){t/t0)rtS. Therefore, from Eq.(5) we obtain 

aN{t0)Ta{t 
-(if*. (6) 

Equation (6) shows that rc grows in time more slowly than rm since rj > 0 (cf. 
Eq.(3)). Therefore, starting from rm < rc, rm will eventually catch up with rc at 
t = tc, and mergers of the strong vortices stop. Here tc is found by setting rc « Tm, 
and from Eqs. (3) and (6) we arrive at 

tc «to ^ 
ott0Ta(t0) 

i+vt 

(7) 
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0.07 

t=38 t=1229 

FIGURE 2. Flow evolution in a typical run of the simulation. Images: Vorticity distributions 
at three different times. Plot: The evolution of the number of the strong vortices. 

Accordingly, the number of the strong vortices in the vortex crystals is obtained 
by setting t = tc in Eq.(l): 

N^N(t0){^^ (8) 

This equation shows that in order to form vortex crystals with many surviving 
strong vortices, initially the flow should have a large number of strong vortices 
with large average circulation, concentrated in a small area. 

The prediction of Eq.(8) is checked with both experiments with pure electron 
columns [3] and vortex-in-cell simulations. The exponents £, rj, as well as quantities 
N, T„ and A are measured in the power law regime of the turbulent relaxation. Then 
each flow in this regime predicts Nc according to Eq.(8). 

In the simulation, initial conditions are generated by randomly distributing in a 
circular region a large number of Gaussian vortices with a given radius and random 
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FIGURE 3. Comparison of the predicted number Nc of the strong vortices in the vortex crystals 
with the Nc of the experiments and the simulations. Each data point represents a particular 
evolution of the turbulent flow. The value for the predicted Nc for each evolution is obtained by 
averaging the predictions at different times in the power law regime. 

maximum vorticity. Within one rotation time of the flow, a large number of strong 
vortices and a low vorticity background form from this kind of initial distribution. 
Generally, the number of the strong vortices formed increases with the decrease 
of the radius of the Gaussian vortices. In Fig.2, we show a typical run of the 
simulation. The vorticity distributions at three times and the evolution of the 
number of the strong vortices are displayed. As expected from Eq.(8), a vortex 
crystal with a large number of strong vortices forms. 

The prediction of Eq.(8) agrees reasonably well with the experiments and the 
simulations. This is shown in Fig.3, in which we plot the predicted JVC, averaged 
over the power law region of N(t), against the observed Nc for the experiments 
the simulations. The scattering of the data, however, is quite large. This might be 
expected, given that the process of vortex crystal formation is chaotic. Furthermore, 
our estimation of rc is not yet a detailed theory, and the assumptions that we made, 
i. e. the strong vortices have approximately the same size and the background can 
be treated as passive scalars, might not be well satisfied for some of the experiments 
and the simulations. Nevertheless, the prediction at least clearly distinguishes the 
characteristics of the flows that form vortex crystals with many strong vortices from 
that of the flows that form no vortex crystals. 

Until now, vortex crystals have been only observed in the turbulent flows with 
a single sign of vorticity, subject to a circular, free-slip boundary condition. It is 
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interesting to know if vortex crystals can form in more general cases with both 
signs of vorticity and/or different boundary conditions. As we have shown in this 
paper, one requirement is that there are many strong vortices in the initial stages 
of the turbulent flow. Our theory also suggests that two conditions are crucial for 
vortex crystal formation. The first condition is that there should be stable RMFE 
states. Calculations similar to those we have done in Ref. [6] should be carried 
out to reveal that ordered, stable structures for the strong vortices can emerge by 
maximization of the fluid entropy of the low vorticity background. The second 
condition is that the mixing time scale TC of the background must be sufficiently 
fast. This can be investigated with the chaotic advection of the point vortices, as 
we have done in this paper. It is conceivable that the mixing time scale can be very 
different depending on the characteristics of the turbulent flow. For example, if 
there are approximately equal number of similar-sized positive and negative strong 
vortices, the mixing of the background may not be as efficient as the case we have 
studied in this paper, since the opposite signed strong vortices tend to form dipole 
pairs and hence at least partially cancel each other's mixing ability. 

This work was supported by NSF grant PHY-9876999 and ONR grant 
N0.N00014-96-0239. We thank Dr. K. S. Fine for providing the experimental 
data. 
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with The Photocathode Trap 
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Abstract. Electrons confined within a Malmberg-Penning trap are a valuable experi- 
mental tool with which to study two-dimensional (2D) fluid phenomena. We developed 
a cesium antimonide photocathode electron source that can generate more complicated 
initial distributions than the traditional thermionic sources. We present a selection of 
experiments performed with The Photocathode Trap illustrating its capabilities, hope- 
fully thereby stimulating future collaborations. 

Strongly magnetized electron columns are a valuable experimental tool with 
which to study two-dimensional (2D) fluid phenomena. "Real" 2D fluids are diffi- 
cult to manipulate, difficult to diagnose, hindered by three-dimensional boundary 
effects, and are perturbed by viscosity; therefore, most 2D fluid "experiments" have 
been computational. 

Under certain experimental conditions, the motion of a strongly magnetized elec- 
tron column is bounce-averaged along the magnetic field and the column behaves 
two-dimensionally. A system of columns evolves by the interaction with its self- 
electric field (E x B drift), and is described by the 2D Drift-Poisson equations. 
Because these equations are identical to the 2D Euler equations describing an ideal 
2D fluid, both systems evolve identically. The vorticity of the electron "fluid" is 
proportional to the electron density; hence, a strongly magnetized electron column 
is equivalent to a 2D fluid vortex [1]. 

The electrons are confined within a Malmberg-Penning trap using static magnetic 
and electric fields [2]. A simple trap, diagrammed in Fig. 1, consists of three coaxial, 
conducting cylinders contained within a high vacuum chamber. Radial confinement 
is provided by an axial magnetic field, about which the electrons gyrate. Axial 
confinement is provided by negatively biasing the end cylinders with respect to 
the central one, in which the electrons bounce back and forth. The electrons are 
destructively imaged by grounding one end cylinder, allowing them to stream along 

*)  durkin@socrates.berkeley.edu 
2) joel@physics.berkeley.edu 
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PHOTOCATHODE PHOSPHOR 

FIGURE 1. The Photocathode Trap. 

the magnetic field and onto a phosphor screen, producing a light image. This image 
is then detected by a CCD camera. 

We inject the electrons with a photocathode. To inject a desired 2D electron 
density distribution, we make a slide of the distribution using a printer with trans- 
parency film. The slide is illuminated with white light and projected onto the 
photocathode. Electrons are emitted only where there is light, so the initial distri- 
bution corresponds to the light image. 

We selected cesium antimonide (Cs3Sb) as the photoemitter because of its fairly 
strong quantum yield in the visible (1 to 5 % for a semitransparent photocathode), 
its reputed ease of fabrication (involves only two chemicals), and its robustness 
(tolerates vacuums below 10~6 Torr) [3]. The fabrication of Cs3Sb consists of two 
steps: 1) A layer of antimony (Sb) is deposited onto a substrate; 2) The substrate 
is exposed to cesium (Cs) vapor while xmder vacuum and between 120 and 140 °C. 
Though the initial antimony layer can be exposed to atmosphere, Cs3Sb cannot; 
therefore, the release of cesium must occur in situ (see Fig. 1). 

The photocathode can inject circular electron columns up to several Debye 
lengths in radius, with densities of 3 x 107cm~3 and temperatures of 3 eV, cor- 
responding to Debye lengths of approximately 0.2 cm (these values depend on the 
light source's intensity, the cathode's volt-age, and the photocathode's quantum ef- 
ficiency). Unlike thermionic sources, it cannot inject columns many Debye lengths 
in radius. 

The photocathode's advantage over thermionic sources is its ability to inject 
more complicated electron distributions, as illustrated by the following selection of 
experiments [4-7]: 
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Advisor 0.01 ms 0.10 ms 1.00 ms 

FIGURE 2. The Advisor Instability: Everyone can have an instability with the photocathode. 

0.01 ms 0.10 ms 1.00 ms 10.00 ms 

• 

FIGURE 3. Equipotential Cathode Injections: The injected electron distribution versus the 
inject time for a -20 V equipotential cathode and a column radius of 0.50 cm, showing that 
electrons are being trapped during the injection phase. For 0.01 ms, the distribution is centrally 
peaked. For 0.10 ms, it is flat-topped. For 1.00 ms, it is slightly hollow and there is a m = 7 
diocotron instability present. For 10.00 ms, it is very hollow with lots of structure. A hollow 
distribution is predicted for an equipotential cathode [8]. 

N = 7 10000 

FIGURE 4. N Vortices Arranged in a Ring: An example of these patterns is shown for N = 7, 
and the experimental lifetimes demonstrate excellent agreement with Havelock's theory (dashed 

line) [9]. 
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• • • • • » 

»       •       • •       •      * .      0      • 
« • • • • • •   • •   » •   • 

FIGURE 5. N Vortices Arranged in a Ring with a Central Vortex: The strength of the central 

vortex with respect to the ring vortices, 7, is controlled by varying its radius, as demonstrated here 

for N = 10+ 1. The experimental lifetimes agree well with theory (dashed line) [10]. Experiments 

have been performed for N = 3 + 1 to 10 + 1. 

10, 

FIGURE 6. Campbell and Ziff Patterns: Campbell and Ziff have generated a catalog of stable 

2D vortex patterns for N = 1 to 30 and for certain N up to 217 [11]. Here are three of those 

patterns; all are stable, as predicted. 

7 = 1+6 19 = 1+6+12 37 = 1+6+12+18 61 =1+6+12+18+24 

FIGURE 7. Triangular Numbers of Vortices: Patterns of triangular numbers of vortices, 

N = 1 + 6(1 + 2 + 3 + ...), are interesting because an infinite number of vortices favors a 

triangular lattice. The patterns presented here arc also found in Campbell and Ziff's catalog, and 

experimentally they survive for over 100 bulk rotations. 
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FIGURE 8. The Jin 6: This pattern emerged from a maximum entropy theory developed by 
Jin and Dubin to predict the evolution of stable vortex patterns from the turbulent decay of an 
electron system [12]. This research inspired Coppa to analytically study the stability of two sets 
of N vortices with strengths 71 and 72 arranged in two rings with radii ri and r2 in a boundary. 
If 7l = 72 and n = 0.66, then a stable pattern will also have r2 = 0.49 (from Coppa's formulas), 
as shown in (a); experimentally, it lives for over 800 bulk rotations. We also experimented with 
a smaller version: n = 0.25 and r2 = (0.49/0.66) (0.25) = 0.19. The initial state in (b) exhibits 
a curious breathing motion around the stable N = 6 hexagon. The patterns oscillate between 
near-triangular and near-hexagonal states, as shown in (b)-(e). One breath takes approximately 
1.5 bulk rotations and they continue for over 1000 bulk rotations. 

(a) 

©     ©     © 

FIGURE 9. 3 Vortices in a Line: The system in (a) is integrable and unstable: the three 
equilibria are 123, 213, and 132 [14]. (b) depicts the motion we observe in the reference frame 
rotating with the pattern: vortices 1 and 2 swap positions continually for 100 bulk rotations. 
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FIGURE 10. "Negative" Vorticity: In (a), we illustrate the possibility of simulating "negative" 
vorticity with just electrons by having a uniform background density, corresponding to a uni- 
form bulk rotation; regions with twice the density (clumps) should behave like positive vorticity, 
whereas regions with no density (holes) should behave like negative vorticity. (b) shows an exper- 
imental image of 3 holes in a uniform background (the lighter region on the outside edge, from 2 
to 7 o'clock, is a defect in the phosphor). 
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2-D Interaction of Discrete Electron Vortices 

Y. Kiwamoto, A. Mohri, K. Ito, A. Sanpei and T. Yuyama 

Department of Fundamental Sciences, Faculty of Integrated Human Studies, 
Kyoto University, Kyoto 606, Japan 

Abstract We experimentally study 2-dimensional interaction among discrete vortices and 
broad voracity distribution. Here we report a few topics from our initial results. We observe 
long-lasting orbital motion of discrete vortices in vacuum, while a rapid re-organization 
occurs in the spatial distribution of vorticity when a discrete vortex is immersed in an 
extended distribution of the background vorticity. 

INTRODUCTION 

Nonneutral plasmas not only provide excellent means of studying 2-dimensional (2D) 
dynamics of Euler fluid which has been a subject of extensive studies over 100 years but 
also exhibit varieties of collisionless and collective processes that make the dynamics 
physically more colorful and rich. One interesting aspect is interaction among many 
vortex strings that is described by Hamiltonian equations in the limit of zero cross- 
section but leads to mutual merging and reorganization of spatial distribution in the 
other limit. Work in this field includes single vortex motion in vacuum (1) or with 
externally applied shear field (2), merging process between two vortices (3), and 
relaxation of spontaneously-generated many vortices to a quasi-steady crystallized 
state (4). One drawback with previous experiments is that the initial conditions are not 
sufficiently controllable for studying dynamics involving two vortices or more. 

In this paper we describe a new scheme of vortex generation and report some new 
results, observed with this configuration, that include 2D dynamics of point vortices in 
vacuum compared with the Hamiltonian model and dynamics of a discrete vortex 
immersed in a background vorticity. 

EXPERIMENTAL DEVICE 

We have produced an ensemble of many point vortices of nonneutral electron plasma 
in a cylindrical trap. The core part is an array of cathodes, as shown in Fig.l, each of 
which consists of impregnated tungsten surface (1.1mm in diam) supported by 
cylindrical body with outer diameter of 3.1 mm. The body consists of double shells for 
thermal insulation, and the outer shell is mechanically supported in an array of holes 
drilled in a ceramics plate. The emitters are heated with insulated filaments. The array 
of the emitters faces with a 1 mm-apart anode plate with mesh-covered extraction holes 
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FIGURE 1.  Configuration of trap and electron emitter. 

of 2.6 mm. The acceleration voltage applied to each cathode is adjustable 
independently with respect to the grounded anode plate, so that we can choose the 
number, location and the strength of the vortices by selecting cathodes and controlling 
their emission currents. 

The electron beams are injected from a weaker magnetic field side (with mirror ratio of 
5.27) to form point vortices with initial diameter of 0.44 mm and length L = 235 mm at 
prescribed radial positions with total number changeable from 1 to 19. The vortices are 
located at the vertices in the network of triangles with equal side-length of 5.2 mm. The 
strength of homogeneous magnetic field B is varied up to 0.048 T. The cylindrical 
conducting side wall at 32 mm from the machine axis is longitudinally divided into 11 
rings with a uniformly separation of 24 mm. The biasing voltage on each ring can be 
controlled externally so that the potential distribution in the cylinder is tailored to form 
a spheroidal plasma (5). It is evenly grounded in this experiment to assure equal lengths 
of the vortex strings. Two 54 mm long tubes with the same inner diameter bound the 
rings at both ends, and are biased negative so as to plug electrons axially. Under these 
conditions the machine serves as a Malmberg-trap (6). 

The plasma is produced repeatedly in pulsed operation by reducing the potential 
barrier at each end sequentially. The diagnoses are made destructively by dumping the 
trapped electrons through the tube at the far end from the electron injector onto a 
conductive phosphor plate that serves both as a Faraday-cup collecting all electrons 
within its circular cross-section of 50 mm in diam. and as an indicator of the luminosity 
distribution detected with a monitoring CCD camera. The latter corresponds to the 
distribution of the line-integrated vorticity. In the present study the reproducibility is 
within a few percents in terms of the total charge collected on the Faraday-cup. 

DISCRETE VORTEX IN VACUUM 

We study orbital motions of discrete vortices in vacuum, which are described in a 
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Hamiltonian form. A concrete expression of the location (xa,ya) of a vortex a is given 

in the complex plane by, 

dt 

dw(z) 
dz + Q(U)z«l. 

where z* = xa + iya. The first term in the right hand side is described as,, 

w\ w"?2 

(1) 

(2) 

Here the first term stands for effects from other vortices, and the second from the image 
charges induced on the conductive wall at k\ = R. The circulation Kß of vortex ß is 

related to the plasma density by the following relation, 
.en(x',y') 

BQBL 
K ß ■ ffdx'dy'- e0B 

. CTdx'dy'-£-~ 
(ol     eNß 

(3) 

The integration is made over the cross-section of each vortex. The rotational drive 
forced by static radial electric field associated with confining potential at the ends is 
given by Qdz«|). 

In the case of a single vortex put in vacuum, the first term in eq.(2) disappears, and 
only the interaction with its image and the external drive are present. From eq.(l) the 
vortex is known to show a circular orbit with the angular frequency of 

K 
(O =• • + Q(r).   (4) 

2*(tf2-r2) 

Figure 2 shows the rotation 
frequency of the vortex as a 
function of the total number of 
constituent electrons Nv that 
corresponds to the circulation of 
the vortex. Different symbols 
correspond to different plug 
potentials and different injection 
energies. The linear dependence 
of the rotation frequency is the 
manifestation of the contribution 
of the image charge. 

The offset at JVV = 0 corresponds 
to Q(r) that is attributed to the 
radial electric field externally 
imposed at the end-plug cylinders. 
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FIGURE 2.  Rotation frequency of single vortex in vacuum. 
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It agrees quite well with the bounce-averaged ExB rotation velocity of electrons that is 
calculated for actual potential distribution in vacuum. Since eq. (1) shows a good 
agreement with the observations, it may be developed as a convenient method for 
experimental determination of the vacuum electric field. 

Dynamics of two or more interacting vortices has been examined in the same way. 
The initial trajectory of each vortex agrees with the calculated results of eq.(l), though 
the discrepancies increase after a few rotation periods probably due to small differences 
in the initial conditions. Details of the examinations will be reported elsewhere. An 
important statement at this stage is that the discrete vortices interacting in the vacuum 
continue to orbit around without merging for a long period comparable to the coulomb 
collision time. However the trajectories of the vortices are observed quite different once 
the space among the vortices are filled with a continuous distribution of an electron 
plasma that forms a background vorticity as described below. 

DISCRETE VORTEX IN BACKGROUND VORTICITY 

We produce the background plasma by stacking electrons which are injected 
repeatedly from two cathodes, one on the machine axis and the other at the periphery 
(r = 10.4 mm). The stacking includes pulsed filling of electrons along the magnetic field 
lines and radial transport which are repeated up to a few hundreds times until the 
electrons form a moderate radial density distribution. We wait typically one more 
second for the distribution to become broad enough and axisymmetric before injection 
of discrete vortex under study. 

Figures 3 shows the dynamics of a discrete vortex that is produced initially at 
different radial positions, r = 9, 8 and 5 mm with Nv = (2.6, 1.3, 2.4) x 107, 

respectively. The electron number of the background plasma, Nb = (2.5 - 3.0) x 10 8, is 
one order of magnitude higher than Nv in the discrete vortex. 

In each panel the radius ( distance from the center of background vortex, circle) and 
the angular velocity (square) of the discrete vortex are plotted as a function of time 
after the injection (t = 10 (is), and the corresponding quantities without the background 
plasma (open symbols) are plotted for comparison. While the vortex keeps a steady 
orbit in vacuum for more than 2 ms, the background vorticity increases the rotating 
velocity of the discrete vortex and attracts it toward the center. The discrete vortex 
either reaches the center of the background quickly to form a peaked distribution of 
vorticity or stagnates at a close distance to the center to be shortly dispersed into the 
background while rotating. In either case the identity of the discrete vortex is lost 
within a time of a few rotations around the center that is shorter than an orbiting period 
in vacuum. 
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FIGURE 3.  Orbit of a discrete vortex in a background vorticity. Distance from the background center 
and the rotation velocity is plotted as a function of lime. Vortex is produced at 10 /is. 

DISCUSSION 

The observation indicates that some collective interaction plays an essential role in the 
rapid merging. Excitation of waves, such as diocotron mode, in the background may 
enhance the interaction (7), though we do not have an adequate theoretical model 
applicable to the present experiment. 

Very recently Schecter and Dubin have proposed a theoretical   model of vortex 
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motion in a background vorticity gradient (8). For present analysis we start from 
eq.(6)  of ref.8, neglecting the logarithmic factor of order 1. We approximate that the 

density distribution of the background electrons as   nb(r) « (A/^/J* L|exp(-r fb j, 

and introduce characteristic time T0 - eQBLb jeNv. Employing normalized radius 

p = r/b and time t - f/r0, we can write the equation for the location of the discrete 

vortex as, 

±.?4A*j.m . (5) dt        nS(p) \   2xy  ) 

Here the gradient of the background vorticity is given by to " ~2pexp(-p UjcftQb, 

and its shear by |A| - -S(p)/nYTo, where S(p)«(l + l/p jexpl-p l-l/p . The 

contribution ofiVj, remains only in the time-dependent term as   y =■ NvfNi,. 

The equation can be solved only numerically. With experimental parameters such 

that   L = 0.235m, b •=> 0.01m and Nv - 2 x 107, therefore  T0 - 3.1 //s, we calculate 

the radial position of the discrete vortex as a function of time. Figure 4 shows the 
results for vortex starting at 5 mm and 10 mm from the center of the background that 
consists of different number of electrons such that y - 1/20» 1/10,1/5. The trajectory 
curve shifts upward as JV& decreases, namely the merging speed of the discrete vortex 

increases as the vorticity of the background increases. We further notice that the 
calculated time scale is very close to die experimental one as evaluated from the data 
shown in FIG.3. 

Though the main part of our new observation appears to be described well by the 
fairly simplified theoretical model, the bounced trajectory as shown in the middle of 
FIG.3 cannot be obtained from eq.(5). Since radial derivatives come in the original 
equation, a slight modification in the density profile of the background plasma may lead 
to the bouncing. More detailed density distribution in the background should be 
determined experimentally for full understanding of the process. 

In the workshop we also have reported observation that two or more discrete 
vortices, which remain orbiting around separately for a sufficiently long time in vacuum, 
merge very rapidly or form a quasi-steady structure in the presence of the background 
vorticity. These observations strengthen the statement that the background vorticity 
plays an essential role in the evolution of a turbulent state which consists of strong 
vortices and weak vorticity distribution that is smoothed out in coarse-graining. 

In summary we have reported experimental observation of 2-dimensional dynamics of 
discrete electron vortices both in vacuum and in background vorticity, demonstrating 
very strong influence of the background vorticity in the evolution of the spatial 
structure of the guiding-center fluid. 
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FIGURE 4.    Calculated orbits of a discrete vortex in a background vorticity. Distance from the 
background center is plotted as a function of time for different level of the background Vortex starts at 10 
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Vortex Motion Driven by a Background 
Vorticity Gradient l 

David A. Schecter and Daniel H.E. Dubin 

Physics Department 
University of California at San Diego, La Jolla, CA 92093 

Abstract. The motion of self-trapped vortices on a background vorticity gradient 
is examined numerically and analytically. The vortices act to level the local back- 
ground vorticity gradient. Conservation of momentum dictates that positive vortices 
("clumps") and negative vortices ("holes") react oppositely: clumps move up the gra- 
dient whereas holes move down the gradient. A linear analysis gives the trajectory of 
small clumps and holes that rotate against the local shear. Prograde clumps and holes 
are always nonlinear, and move along the gradient at a slower rate. This rate vanishes 
when the background shear is sufficiently large. 

Self-trapped vortices can be clumps (vorticity excesses) or holes (vorticity 
deficits). The interaction of clumps and holes with a background vorticity gradient 
often plays an important role in 2D hydrodynamics. For example, the decay of 2D 
turbulence can be controlled by the slow drift of holes down a vorticity gradient [1]. 
The motion of hurricanes on a rotating planet is influenced by the north-south gra- 
dient in the Coriolis parameter, which can be thought of as a (potential) vorticity 
gradient [2-7]. 

Here, we calculate the rate at which clumps and holes ascend or descend a back- 
ground vorticity gradient under the conditions that (i) the vortices are point-like 
and (ii) the background flow has strong shear. While point-like vortices and strong 
background shear may be rare in geophysical settings, they are common in nonneu- 
tral plasmas [1,8] and may also be found on planets like Jupiter that have intense 
storms in strong zonal winds [9]. 

Clumps and holes can be classified as prograde or retrograde, depending on 
whether they rotate with or against the local background shear. We find that 
a linear analysis gives the motion of a retrograde vortex. Prograde vortices are 
always nonlinear and move at a slower rate that is given by a simple "mix-and- 
move" estimate. 

We neglect viscosity and consider flows that are governed by the 2D Euler equa- 
tions: 

This article is scheduled to appear in the 13 September 1999 issue of Physical Review Letters. 
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dt 
+ tf.VC = 0,     v = zx\7ip,    VV = C- (1) 

Here, v(r,6,t) is the velocity field, C(»",0,t) = ■* • V x v is vorticity and ij){r,9,t) 
is a stream function. For analysis, the vorticity is decomposed into vortices («) 
and background (b): £ = C& + EC«- We focus on tne case where £6 is positive, 
cylindrically symmetric and monotonically decreasing at t = 0, making clumps 
retrograde and holes prograde. 

Figure 1 shows that clumps ascend a background vorticity gradient whereas holes 
descend the gradient [2,3]. At t - 0, a clump and a hole are placed in an axisym- 
metric background. The system is evolved with a vortex-in-cell (VIC) simulation 
that numerically integrates Eq. (1) [10]. Eventually, the clump is driven to the 
peak in background vorticity, whereas the hole is driven toward the minimum. 
Such gradient-driven separation may help organize storms into bands of like-sign 
vortices on planets with strong zonal winds, with holes in vorticity troughs and 
clumps on vorticity peaks [9]. 

The opposite drifts of clumps and holes can be understood by momentum con- 
servation. A similar argument has been used to explain the motion of phase-space 
density clumps and holes in plasma turbulence [11]. We focus on cylindrical geom- 
etry, where the flow conserves canonical angular momentum, P$ = J d?r £r2. The 
analysis carries over to planar geometry, where linear momentum replaces Pg. 

When there is just one vortex, P$ consists of two parts, a background contribution 
and a vortex contribution: Pe = Tb {r2)b+rvr%. Here T6 > 0 is the total circulation 
of the background flow, Tv is the vortex circulation, rv is the radial position of the 
vortex and < r2 >b denotes the Cft-weighted spatial average of r2. As indicated in 
Figs. 1 and 2, both clumps and holes mix and flatten the (0-averaged) background 
vorticity. As the background is levelled, < r2 >b increases (since d^/dr < 0). To 
conserve Pe, a clump (r„ > 0) must climb the background gradient and decrease 
r„, whereas a hole (r„ < 0) must descend the gradient and increase r„. 

We now determine the radial speed of the vortex. The vortex's dominant trans- 

vorticity 

FIGURE 1. Gradient-driven radial separation of a clump (black dot) and hole (white dot) in a 

circular shear flow. 
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clump 

rv>o 

FIGURE 2. Local mixing of the background increases < r2 >(,. By conservation of Pg, clumps 
and holes react oppositely. 

lational motion is rotation about the center of the background. We work in this 
rotating frame, so the vortex is nearly stationary, and we define a local (x, y) coor- 
dinate system centered at the vortex. In these coordinates, the initial velocity due 
to the background is v = Ayx near the vortex, where A is the shear, and the initial 
background vorticity gradient is £'0y (where y points in the local r-direction). 

Figure 3 shows the initial stream-lines in the vicinity of a retrograde clump (a) 
and a prograde hole (b). The stagnation points in Fig. 3(a) are at a distance I 
above and below the clump, where 

l\ y/\Tv/2TTA\. (2) 

We treat the vortex and the disturbance that it generates as perturbations to the 
initial shear-flow, and suppose that the Euler equation for the evolution of Q, can 
be linearized, 

9      A   d •*a = -c ,r„ 
2ir x2 + y2 (3) 

Here, 5£& is the background vorticity perturbation, and we have used £, = Tv5(x). 
This assumes that the vortex is point-like and moves slowly compared to the evo- 
lution of the background. We have also neglected the velocity perturbation due to 
6Cb, assuming that it is negligible compared to the vortex velocity field. 

Equation (3) can be solved by the method of characteristics, yielding 

öCb 
-r, v S,o 

4TT Ay 
In 

x2 + y2 

(x-Ayt)2 + y2 (4) 

The radial velocity (f„) of the vortex is the y-component of the velocity perturbation 
that develops at the origin. By summing the contributions to the velocity field from 
each vorticity element, we obtain the following integral expression for r„ (here, 
u = x/y) : 

T   C L 

Tv ~ 4n2 A \ 

dy 

y 

oo 

/ 
—oo 

du- 
ll2 + 1 

-In 
u2 + l 

(u - At)2 + 1 (5) 
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A small scale (/) and a large scale (L) cut-off are introduced to escape infinities 
in the y-integral. The small scale cut-off describes the minimum distance from the 
vortex at which nonlinearities in the background flow can be ignored. Thus, we 
identify the small scale cut-off with I [Eq. (2)], the size of the shaded trapping 
region in Fig. 3(a). To determine the upper cut-off, we note that curvature in the 
unperturbed flow can not be ignored for \y\ Z rv, where rv is the radial position of 
the vortex. We therefore set L = c ■ rv, where c is presumably O(l). 

The integrals in Eq. (5) yield 

r.=    ^^ln{Lll)-tan-'{Tl2) 

= ± Co I2 In (c rv/l) tan'1 {T12), (6) 

where T = \A\t and +/- is for clumps/holes. For T » 1, the inverse tangent is 
approximately 7r/2 and r„ is approximately constant. Equation (6) gives a reason- 
able scaling for the vortex speed: rv increases with Tv and Co, while it decreases as 
the local shear A intensifies. 

However, the validity of Eq. (6) rests on the accuracy of Eq. (3), which neglects 
curvature in the unperturbed flow, the velocity perturbation due to S£b, motion of 
the vortex, and all nonlinear terms. We now test Eq. (6) against a VIC simulation 
that keeps all of these effects [10]. A linear simulation that incorporates the first 
three effects is used as an independent check. 

We consider the specific case where the initial background vorticity distribution 
(Ct at t — 0) is given by 

Ur) -{I 1.25 • r r<0.8 
r > 0.8. (7) 

The rotation frequency of this background is Q,0(r) = 0.5- 0.417 -r, for r < 0.8. We 
assume that the flow is bounded by a circular wall with radius Ru, — 1, and that 

< 
(b) 

FIGURE 3. Initial stream lines for a retrograde clump (a) and a prograde hole (b) in a shear 

flow v = Ayx, A > 0. 
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there is free slip at the wall (tp = 0 at R^). The background chosen here represents 
a larger class, where the radial derivatives ££ and Q'0 vary slowly with r. 

The linear simulation integrates the following set of equations.   The vorticity 
perturbation is expanded as a Fourier series in the polar angle 6, 

00 

5C=   £   Z(m\r,t)-Jm9. (8) 
m=—oo 

The linear evolution of Z^ is given by 

Z(m) = im^ [*[m) + #[m>] . (9) — + imQ0(r) 

Here, \I>„ and $(, are Fourier coefficients of the vortex stream function and 
the stream function of <5£&- The vortex moves radially according to fv = 
— döip),/d6\fv r"

1, which can be written 

e\      00 

rv = - £ m ■ Im Km) (r„, t)eim9»] . (10) 
rf tn=l 

The angular velocity of the vortex is given by the unperturbed flow, 

9V = Vo{rv). (11) 

In the linear simulation, Poisson's equation is solved for ^^ to second order 
accuracy in the radial grid-point spacing (~ fi„,/2000). The vortex position rv 

and the Fourier coefficients {Z(m)} are evolved with third-order Adams-Bashforth 
steps (~ 103 steps per background rotation). The number of (excited) Fourier 
components is made finite in the linear simulation by setting \lj£m) = 0 for m > 
y/e-rv(t)/l(t). This wave-number is the inverse of the horizontal width (in radians) 
of the trapping region (TR) that is shaded in Fig. 3(a). Neglecting larger m amounts 
to neglecting the contribution to rv from the TR, where the fluid is rapidly (T ^ 1) 
mixed by the vortex. Although the TR is defined only for a retrograde vortex, we 
try the same cut-off for a prograde vortex. 

Figure 4 shows the linear (dashed line) and the VIC (solid line) computations 
of rv(t) for a retrograde clump and a prograde hole of initial strength l/rv = 0.12. 
The ratio l/rv is called the "vortex strength" because it is a dimensionless measure 
of the vortex intensity relative to the background shear A — — rvQ,'0(rv). The linear 
simulation of clump motion is in good agreement with the VIC simulation. In 
contrast, the hole moves much slower in the VIC simulation than in the linear 
simulation. The results for 6v{t) (not shown) give similar agreement for clumps 
and disagreement for holes. 

Consider first the motion of the retrograde clump. It is apparent from Fig. 4 
that the clump rapidly accelerates to a constant radial speed. Equation (6) offers 
a value for this speed, up to a factor c (of order 1) in the logarithm. 
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FIGURE 4. Radial position of vortex versus time T = rv{0>)\ti'o\t for linear (dashed) and VIC 

(solid) simulations. 

Rather than set c = 1 on physical grounds, we use a precise value for c that can 
be obtained by a standard (but lengthy) analysis of Eqs. (9-11). Unlike the previous 
derivation of Eq. (6), this analysis incorporates curvature of the unperturbed flow, 
and the velocity perturbation due to SCb- However, the calculation still makes use 
of an unperturbed orbit approximation: 6^, is evolved with the vortex fixed on a 
circular orbit [8V = Ct0(rv)t], and r„ is taken to be the radial velocity perturbation 
at the vortex center. Wave-numbers m > y/e • rv/l are neglected, as in the linear 
simulation. The analysis yields a time-asymptotic value for rv that converges to 
Eq. (6) in the limit of small l/rv. In general, the factor c depends on rv and the 
form of Co(0- In our example [Eq. (7)], the expression for r„ reduces to Eq. (6) for 
l/rv < 0.1, with c = 0.43 for rv < 0.7. 

Figure 5 shows that the radial speed of the clump converges to linear theory 
[Eq. (6)] as the clump strength l/rv approaches zero. All clumps start at r„ = 0.4 
and the background is always given by Eq. (7). We vary l/rv by changing Tv only. 
We obtain rv from a straight-line fit to r„ vs. t, as rv decreases from 0.375 to 0.35. 
In the plot, rv is normalized to Corl- Botn Cr« and tne clump strength l/rv are 
evaluated at rv = 0.363. The diamonds correspond to linear simulations and each 
'X' corresponds to a VIC simulation. The solid curve is the T -r oo limit of Eq. (6), 
with c = 0.43. Both linear and VIC simulations converge to the solid curve as l/rv 

tends to zero, indicating that the linear theory of Eq. (6) works well for retrograde 
vortices. 

We now consider the motion of prograde holes. The failure of linear theory 
for holes can be understood by considering the stream lines in Fig. 3(b). Linear 
theory breaks down for times greater than the orbital period r of a fluid particle 
initially at x ~ I, the small length scale cut-off. The orbit of this particle is dashed. 
Since r ~ l2/Tv, r remains constant for holes as Tv approaches zero, while the 
time scale for the hole to move a distance of order I becomes infinite. Thus, the 
background perturbation around a small hole becomes nonlinear "instantaneously" 
for all practical considerations. For clumps [Fig. 3(a)], this problem does not arise, 
since fluid particles at x ^ I are not trapped around the vortex. Note that linear 
theory fails for holes not because the hole has negative vorticity, but because the 
hole is prograde with respect to the shear flow in our example [Eq. (7)]. 
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FIGURE 5. r„ versus l/rv for linear simulation (diamonds), VIC simulation (X's and O's) and 
experiment (square). 

The following "mix-and-move" argument gives a good estimate for the hole ve- 
locity. A hole will attempt to mix a thin layer of background vorticity and move 
a distance Ar in response [Fig. 2(b)]. This mixing layer (ML) corresponds to the 
shaded region in Fig. 6, which shows the flow around a hole with l/rv — .05. The 
ML extends from 0 = —TT to -K and has an average radial width of ~ 21. Suppose 
that the hole levels the entire ML (d<^>g —> 0) and has a negligible effect on fluid 
outside the ML. Then, using conservation of Pe, it can be shown that r„ must in- 
crease by Ar ~ lC,'o/0!o. To obtain the hole velocity also requires an estimate of the 
time At required for the ML to flatten. The orbital speed of a trapped particle is 
on average dominated by the background shear, so A£ is approximately 47r/£|Q^|. 
The velocity of the hole is Ar/At, or equivalently 

47T i
2C (12) 

In Fig. 5, we compare Eq. (12) to the late time hole velocities that are observed 
in the VIC simulations. As before, Co is given by Eq. (7) and the holes are located 
initially at r„ = 0.4. The plotted values of rv are from straight-line fits to rv vs. t, 
as r„ increases from 0.5 to 0.6. The ratio l/rv and the velocity normalization (J0rl 
are evaluated at rv = 0.55. The simulation velocities (denoted by O's) are between 
0.6 and 1.1 times the estimate, indicating that Eq. (12) is a reasonably accurate 
approximation for the speed of prograde vortices. 

The speed of a prograde hole down a vorticity gradient was recently measured in 
an experiment [1]. The speed (plotted in Fig. 5) is within a factor of 4 of Eq. (12), 
which is at the level of estimated error. The slower radial drift that is measured in 
the experiment may be due to the presence of multiple (2-3) holes, which changes 
the structure of the mixing layer. Simulations with multiple holes also give lower 
values of r„. 

The "mix-and-move" estimate assumes that the hole continuously moves into 
new regions where the 0-averaged background vorticity has a slope d<fr

>e = C0- 
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FIGURE 6. Initial stream lines and mixing layer (shaded) for a prograde hole in a circular shear 
flow [Eq. (7)]. 

However, if the ML moves with the hole, d<f^f shortly becomes zero at rv, and 
the background and hole equilibrate in a phenomenon akin to the formation of a 
BGK mode in a nonlinear plasma wave [12]. This will occur if At « tu where tt 
is the time for r„ to increase by I and At is the mixing time. Using Eq. (12) for rv 

then implies that an equilibrium forms when C,'J£t'0 «I [13]. 
For the simulation data in Fig. 5, £0IQ'0 = 3, so only a small fraction of the 

ML moves with the hole [14]. However, by artificially increasing |fi'0| in the VIC 
simulation so that C/^o is less tnan *> one can examine hole motion when the "mix- 
and-move" model breaks down. For C,'JÜ'0 equal to 3/4 and 3/8 (and l/rv = 0.2), 
we find that the ML moves with the hole and an equilibrium is reached after a 
small radial displacement (;$ .lr„). 

Several issues remain. First, undamped modes or quasi-modes can affect vortex 
motion if their phase velocities resonate with the vortex velocity. This is partic- 
ularly important when the background has steps [15]. Also, when l/rv ^ 1, our 
linear treatment of retrograde vortex motion becomes invalid. Finally, our analysis 
indicates that there is a critical value of C,'JQ!0, of order 1 for a prograde vortex and 
smaller for a retrograde vortex, below which equilibria form and above which the 
vortex continues to move. This nonlinear behavior merits further study. 

The authors thank W.G. Flynn for his work on the VIC simulation and 
C.F.Driscoll for help with interpreting the experiment. This research was sup- 
ported by NSF grant PHY94-21318 and ONR grant N00014-96-1-0239. 
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Abstract. The inviscid damping of an elliptical perturbation on a 2D vortex is ex- 
amined experimentally and theoretically. The perturbation is generated by an impulse 
at the wall. Initially, the quadrupole moment (ellipticity) of the perturbation decays 
exponentially. This result is significant, since arbitrary perturbations need not decay 
exponentially. The decay rate is given by a "Landau pole" of the equilibrium pro- 
file. When the Landau damping is weak, the vorticity perturbation, in addition to the 
quadrupole moment, behaves like an exponentially damped mode. This "quasi-mode" 
is actually a wave-packet of exceptional continuum modes that decays as the continuum 
modes disperse. 

The inviscid relaxation of a 2D vortex after a weak external impulse is studied 
experimentally and theoretically. In the experiments, the 2D fluid is a strongly 
magnetized electron plasma in a cylindrical Penning trap, with wall radius Ru, [1,2]. 
These electron plasmas have negligible viscosity and are governed approximately 
by the 2D Euler equations: 

dC/d* + tf-VC = 0,     v = zxVtjj,      and V2^ = C (1) 

Here, v(r, 9, t) is the (E x B drift) velocity field in the plane perpendicular to the 
trap-axis, £{r,9,t) = z • V x vis the vorticity, and ip(r,d,t) is a stream function. 
The boundary condition is ip = 0 at B^. 

EXPERIMENTS 

Figure 1 shows two experiments that illustrate the process of "inviscid damp- 
ing" [2-8]. In both experiments, we excite an elliptical (m = 2) perturbation on 
an initially circular vortex. The initial vorticity distribution £0(r) and the initial 
rotation frequency fio(0 are monotonically decreasing functions of radius, making 
the vortex stable [4]. In experiment (a), the impulse excites an undamped elliptical 
mode, with frequency w. The fluid rotation is resonant with this mode at a radius 
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(a) 0.45       4.5 45_       450 

vorticity (lo3 sec-1) vorticity (10 sec-1) 

FIGURE 1. Experiments, a) An undamped mode is excited, with critical radius rc outside 
the vortex, b) Inviscid damping occurs when rc is inside the vortex. In both experiments, the 
unperturbed vorticity £„(r) decreases monotonically with r. Time is measured in central rotation 
periods: T = t ■ fio(0)/27r. 

rc, defined by 2Q0(rc) = u/, and this critical radius lies outside the vortex. The 
vortex in (b) is similar to the vortex in (a), except that C0(r) extends past the 
critical radius rc. The excited mode is now damped by resonant mixing of vorticity 
at rc. This inviscid damping is analogous to collisionless Landau damping, where 
a compressional plasma wave decays due to its interaction with charged particles 
that travel at the same velocity as the wave [4]. 

Figure 2 shows the evolution of the quadrupole moment Q? of the perturbation 
in Fig. 1(b). We define the quadrupole moment by the equation 

Q2= fRvdrr36<;W(r,t), 
Jo 

(2) 

where R„ is the vortex radius, and 8C,^ is the m = 2 Fourier component of the 
vorticity perturbation. The amplitude of Q2 is a measure of ellipticity. Also plotted 
in Fig. 2 is the theoretical linear response of the vortex to an externally applied 
8(t) impulse. Initially, there is good agreement between linear theory and the 
experiment. However, after 5 rotations, the experiment diverges from linear theory, 
and the amplitude of Q2 begins to oscillate. These nonlinear oscillations are due 
to mixing of trapped vorticity at rc. Eventually, the amplitude saturates, and the 
vortex relaxes to a rotating "cat's eyes" equilibrium [Fig. 1(b), far right]. 

For the remainder of this paper, we focus on the initial linear decay, which prop- 
erly describes the evolution for arbitrarily long times if the amplitude is sufficiently 
small [2]. Figure 2 indicates that the initial decay of Q2 is approximately exponen- 
tial, i.e. |<52(0I ^ IQ2(0)\e"yt. This result is generic to the experiments, and is sig- 
nificant, since arbitrary linear perturbations need not decay exponentially. Of equal 
interest is that, when the damping is weak (7/w << 1), the actual vorticity pertur- 
bation behaves like an exponentially damped eigenmode: 5(,{r,t) « £(r)e-7'e-,ü't, 
for r ;$ rc. This perturbation is referred to as a "quasi-mode", since it is not an 
exact eigenmode of the Euler equations. 
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FIGURE 2. Typical evolution of the quadrupole moment, Qi. The X's give Q2 for the experi- 
ment in Fig. 1(b). The diamonds correspond to linear theory. The dashed line is an exponential 
fit to the initial decay. 

LINEAR EIGENMODE THEORY 

As pointed out by Case [9], a linear vorticity perturbation varying as e%™ can 
be viewed as a sum of discrete modes plus an integral of continuum modes (also 
called "shear-waves") [9-11]: 

£CM) = £A(Wd)ar)e-^ + f <kjA(u>)Ur)t 
d J 

,—iuit (3) 

We will use the index k to refer to both discrete and continuum modes.  These 
eigenmodes satisfy the following integral eigenvalue equation: 

777 fRv 
mfio(r)&(r)--Ci(r)jf    <WGm(r|r%(r')   =   wfc&(r), (4) 

where Co is the radial derivative of the equilibrium vorticity. The Green's function 
1 

"2m ferhfe)2ra]-Here^>^<)isthe 
in Eq. (4) is given by Gm(r\r') 

greater (smaller) of r and r'. 
The eigenmodes can be obtained numerically by discretizing Eq. (4) in r. This 

leads to a standard matrix eigenvalue equation, £,• My&fa) = w^fo). If there 
are N radial grid-points between 0 and Ry, then a solution to the matrix equa- 
tion gives N eigenmodes. Any linear initial value problem can be solved numeri- 
cally with a superposition of these eigenmodes: 6((r,t) RS E^=I^(wfc)^(r)e_1Wtt. 
The solution generally breaks down for times greater than the minimum value 
of 27r/mQ'0Ar, where Ar is the radial grid-point spacing and Cl'0(r) is the radial 
derivative of the rotation frequency. 

When there are no discrete modes, the perturbation consists entirely of con- 
tinuum modes. It is common (but often misleading) to view this perturbation 
intuitively as a passive scalar in the equilibrium shear flow. However, a quasi-mode 
is a superposition of continuum modes that does not behave like a passive scalar. 

117 



\ 
•... Q 

(a) 
1 

\ 
R    r 

v      c 

£, A discrete mode 
0)=0.496 

0 

0.832 
^s 

0.968 

. 0.992 

> 0.996 

0.2 0.4 0.6 

r/R 
0.8 

k 
Q 

(b) 
fye) < 0 V 

«1 
'r 

c 

co=0.498 

i r exceptional    0.509 

il       .                                   0.519 r 
A 0.557 

0.990 

0.995 

0.2 0.4 0.6 0.8 

FIGURE 3. Equilibrium profiles and (m = 2) radial eigenfunctions for a top-hat vortex with a 
discrete mode (a), and a top-hat vortex with a quasi-mode (b). 

One goal of this paper is to clarify how the "phase-mixing" of continuum modes is 
consistent with the observed quasi-modes. 

It is useful to compare a quasi-mode, which exists when Co(rc) < 0, to an un- 
damped discrete mode, which exists when C0(

rc) = 0. Figure 3(a) shows the m — 2 
eigenmodes of a "top-hat" vortex, similar to that studied by Kelvin [12]. This top- 
hat supports a single discrete mode, which has a critical radius rc> R„, and a set of 
continuum modes that have eigenfrequencies in the range 2Q0(RV) <wk < 2Qo(0). 
Figure 3(b) shows the eigenmodes of a similar vortex, with a skirt of vorticity that 
tapers past rc. The negative vorticity gradient at rc causes the discrete mode to 
be replaced by a wave-packet of continuum modes. The continuum modes in this 
wave-packet are labelled "exceptional" in Fig. 3(b), since they are approximately 
the same as the original discrete mode. The only noticeable difference is that each 
continuum mode has a singular spike near rc, where the fluid rotation is resonant 
with the mode. As we will soon see, the wave-packet that replaces the undamped 
discrete mode evolves as a quasi-mode, which decays exponentially (at early times) 
as the continuum modes disperse. 

LINEAR RESPONSE TO AN IMPULSE 

We now consider the response of the vortices in Fig. 3 to a brief external impulse, 
of strength e. The impulse is applied at the wall, and creates an instantaneous 
"external" stream function, tpext{r,0,t) = e6(t)(r/Rw)2ei26.   A straight-forward 
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FIGURE 4. The (m = 2) eigenmode amplitudes after an impulse is applied to a top-hat vortex 
with a discrete mode (a), and a top-hat vortex with a quasi-mode (b). 

calculation shows that, for a monotonic vortex, the complex amplitude of each 
eigenmode (immediately) after the impulse is given by 

A{ujk) = i 
2e   <&,<} 2e   Cdrr%(r) 

(R*)2 (6,6)        (Rv)2     <£*>&> 
(5) 

Here, {f,h) is short-hand for the inner-product /0
fi" dr r2f*(r)h(r)/\C0(r)\. Equa- 

tion (5) indicates that the excitation of an eigenmode is proportional to its (scaled) 
multipole moment (here the quadrupole moment, since m = 2). In this sense, the 
system exhibits reciprocity: the eigenmodes that produce the largest external fields 
are also the most sensitive to excitation by a brief external impulse. 

Figure 4 shows the response of both vortices in Fig. 3 to an external impulse. 
In case (a), the discrete mode is excited about 100 times more strongly than any 
of the continuum modes. In case (b), a similar initial perturbation is excited, 
but it now decomposes into a sharply peaked distribution of continuum modes. 
The continuum modes in the peak region are exceptional, in that they are similar 
in form to the original discrete mode (see Fig. 3). Due to this similarity, and 
the sharply peaked distribution, the excitation will behave like an exponentially 
damped version of the original discrete mode. The decay rate 7 of this quasi-mode 
is proportional to the width of the peak in A(uk). Note that the simple mode- 
like behavior of the excitation breaks down near rc, where the continuum modes 
have singular spikes. Here, the perturbation forms filaments, like those seen in the 
experiments [Fig. 1(b)]. 

The evolution of the quadrupole moment of the excitation in case (b) is shown 
in Fig. 5. At early times, the amplitude of Q2 decays exponentially. The inset 
shows that, for r ;$ rc, the vorticity perturbation merely decays as a damped 
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FIGURE 5. Evolution of an excited quasi-mode on a top-hat vortex [Fig. 3(b)]. The dashed 
line is exponential Landau damping, given by Eq. (6). The vorticity perturbation (inset) behaves 
like a damped, rotating mode (for T < 100 and r < rc). The '+' and '-' signs indicate regions of 
positive and negative vorticity perturbation. 

mode, without shearing apart. Near rc, the perturbation actually grows to a finite 
amplitude and then filaments (not visible). Eventually, the decay of Q2 turns 
algebraic, as it must for all linear perturbations on a stable vortex that has no 
discrete modes [4]. 

Exponential decay of Q2 is apparently the "generic" evolution after an exter- 
nal impulse excitation. This is significant, since arbitrary perturbations can (and 
often do) evolve with no stage of exponential decay. However, the possibility of 
exponential decay has been known for some time. A general solution to the initial 
value problem shows that any perturbation will have a contribution from a "Lan- 
dau pole" of the equilibrium profile [4-6]. This contribution behaves exactly like 
an exponentially damped mode, but never represents a complete solution to the 
initial value problem. 

The Landau pole for the top-hat profile in Fig. 3(b) gives the following exponen- 
tial decay rate [4]: 

7: ■r*<i)H (6) 

where r0 is the radius at which Q is maximal. Equation (6) is derived in Ref. 
[4], under the assumption that C,'0{rc) is close to zero. The dashed line in Fig. 5 
corresponds to exponential decay that is given solely by the Landau pole [Eq. (6)]. 
Clearly, the Landau pole gives the correct decay rate of an impulse generated 
perturbation on a top-hat vortex. 

Figure 6 shows the response of a Gaussian vortex, C,0{r) = e~(-5r^Rw^, to an 
external impulse. As before, the initial decay of Q2 is exponential and dominated 
by the Landau pole. Here, the Landau pole was calculated numerically, using the 
method of Spencer and Rasband [6]. 
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FIGURE 6. Decay of an impulse generated perturbation on a Gaussian vortex. The dashed 

line corresponds to the exponential decay that is given by a Landau pole, which is calculated 

numerically [6]. 

Although Q2 decays exponentially, the vorticity perturbation (inset) does not 
behave like an exponentially damped mode. This is due to the large decay rate 
7/w = .35, compared to the previous case where 7/w = 0.01. Because 7 is large, the 
excitation has a broadly peaked distribution of continuum modes, with resonant 
radii (and singular spikes) spanning most of the vortex. The evolution of such 
perturbations is characterized by the "spiral wind-up" [13-15] that is observed 
here. 

SUMMARY 

In this paper, we examined the inviscid damping of elliptical perturbations on 
a 2D vortex. Specifically, we considered perturbations that were generated by 
an impulse, applied at the wall. It was shown that, in general, exponential Lan- 
dau damping properly describes the initial decay of the perturbation's quadrupole 
moment Q2, despite the fact that arbitrary perturbations need not decay expo- 
nentially. We also showed that when Landau damping is weak (7/w << 1), the 
vorticity perturbation 6( behaves like an exponentially damped mode (for r <rc). 
This quasi-mode was identified as a wave-packet of exceptional continuum modes 
that decays exponentially as the continuum modes disperse. When Landau damp- 
ing is strong (7/w ~ 1), the vorticity perturbation exhibits spiral wind-up, and 
does not resemble a mode. 
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Abstract. The equilibrium configuration and the stability of vortex patterns made 
of point vortices equally distributed on two circumferences in a bounded system are 
studied. Such patterns appear worth studying from a theoretical point of view, as 
they have been observed experimentally in nonneutral plasmas confined by a Penning 
trap. The results presented in the paper prove that stable configurations of two rings 
of point vortices can exist. 

INTRODUCTION 

Experiments on nonneutral plasmas confined in a Penning trap [1] have shown 
the existence of stable configurations of vortex patterns, which can be classified into 
three categories: (1) vortices equally distributed on a circumference; (2) vortices 
equally distributed on a circumference with an additional central vortex; (3) two 
sets of vortices equally spaced on two circumferences having the same center but 
different radius (in fact, only one pattern of this kind has been observed, made 
of six vortices nearly placed in the vertices and in the middle of the edges of a 
triangle). While the study of the patterns of the first kind is a classic subject 
in the vortex theory, analytic results for the second category have been presented 
only recently [2]. For the third kind of pattern, theoretical work was performed by 
Aref [3] only for an infinite medium. The present work generalizes Aref's results 
when the domain of the physical system whose domain is a circle of radius Rc. An 
analytic condition is derived for the existence of a stationary configuration and the 
linear stability analysis is carried out. Finally, a non-linear analysis is performed 
for the m = 0 mode. 

EQUILIBRIUM FOR TWO RINGS OF VORTICES 

Due to the very high value of the bouncing frequency in axial direction with 
respect to the rotation frequency of the guiding center in transverse direction, 
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charged particles in a Penning trap can be regarded as straight lines of uniform 
charge, and the dynamics of the system becomes essentially a two-dimensional 
problem. Moreover, the linear charge density is here assumed to be nonvanishing 
only for a finite set of regions (vortices), each of them having a size much smaller 
than the radius Rc of the cross section of the trap. As the Larmor radius is usually 
small with respect to Rc, the velocity of each vortex in the (x, y) transverse plane 
is given by the E x B drift. By expressing the total electric field as the sum of the 
fields produced by each vortex, a set of differential equations governing the time 
evolution of the coordinates (xn, yn) of the vortices is obtained. The equations can 
be written in a compact form by making use of the complex variables (n — xn + iyn 

and defining the strength of the n-th vortex as fn = —Qn/(2-KEoBz), being Qn the 
linear charge density of the vortex and Bz the axial magnetic field. In addition, 
when a stationary configuration rotating with angular velocity Q is investigated, 
a reference frame rotating with the same velocity can be usefully employed [2]. 
In this frame, the classic equations for the dynamics of point vortices [4] can be 
written as: 

dt -"<;+£' ik 

Cn-C* 
_ST" _Jk__ 

k    Cn — Cfc 

where ]Tfc   stands for ^Zfc_^n, while £n = R%/Q represents the location of the n-th 
image charge in the complex plane. 

In the following, the equilibrium condition is studied for a configuration of 2N 
vortices, equally distributed on two circumferences of radius i?i and i?2, where 
the vortices have the same strength, 71 and 72, respectively. The locations of the 
vortices are provided by two groups of N complex numbers, £, 

(P = R, exp [i {tpn + $!)], C? = R-2 exp [i (<pn + $ 

(i) and (n  , given by: 

<. = 1,...,N        (2) 

being tpn = ^p; $1 and $2 are the phases for the two sets of vortices. By introducing 

the expressions (2) for Q into Eq. (1) and supposing the pattern to be stationary, 
one obtains 

fi = 7iw (Rx) + 72K (Ru R2, A$) and Ü = 72w (R2) + 7XK (R2, Ri, -A*) 
(3) 

for the first and the second ring, respectively, being A<£ = <£2 — $1, while the 
quantities w {R{) and K (RI, R2, A<£>) are defined in terms of the function SN (z) = 
N/(l - zN) as: 

u(Ri) = 
1 

— oN (1)] (4) 

K(Ä1,Ä2,A*) = -^ ISJV 

Ui   ) 
-SN( 

Rc      iA$\ 
(5) 
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For a stationary configuration, expressions (3) must provide the same value of Q. 
This requires that the ratio 72/71 between the strengths of the vortices of the two 
rings must have a precise value, given by: 

72 = /c(fla,.Ri,-A$)-h;(fli) (g) 

7l       K{RuR2,A$)-u{R2) 

In addition, ti must be real. To meet this requirement, A<E> must be either 0 or TT/N 

(this pattern is referred in the literature as "double alternating ring" [3]). Having 
fixed the value of A$, regions can be distinguished in the plane (Ri, R2) in which 
72/71 has the same sign. For a plasma made of a single species of particles, the 
region where 72/71 is negative is forbidden. The curves, TT and rx, defined by 

K {Ri, Ri, -A$) = u (Äi) and K (ä1} R2, A$) = u {R2) (7) 

respectively, represent the boundary between permitted and forbidden regions. An 
explicit parametric equation for TT can be derived by using the new coordinates 
(9, P) in the {Ru R2) plane, such that Rx/R2 = tan 6 and (i?c/i?i)2JV = P; in fact, 
the first Eq. (7) becomes a second-order algebraic equation for P: 

. 2„r    1 1     \ = N~1    x       (*\ 
tan ^ll-trtan^G     1 - aP tan" 6 /        2N        \-P K> 

where a = 1 if A$ = 0 and cr = -1 if A$ = 7r/AT. After solving Eq. (8) with 
respect to P, Ri(Q) and R2{Q) are determined analytically. The curve T| is plotted 
simply by exchanging Ri with R2. In Figs. 1, the curves TT and ]?j. are plotted 
for double alternating rings for N = 2 -=- 5. In each figure, the forbidden region is 
indicated as a shaded area. 

LINEAR STABILITY OF THE VORTEX PATTERN 

The stability properties of a stationary vortex pattern can be determined by 
writing the coordinates of the two rings of vortices as [2]: 

tf'2) (t) = (Äi.2 exp (i$li2) + «#'2> (t)) exp (»¥?„) (9) 

where R\>2 and $ii2 represent the equilibrium configuration as determined in the 
previous Section. By substituting the expressions (9) into Eq. (1) and supposing 

that 6Cn'2^ < I #1,21, a system of linear differential equations for £„ is obtained. 

The fully-coupled system can be simplified by performing a Fourier analysis. In 
facts, by defining the Fourier amplitudes for the two rings as: 

A£
2)
 (t) = E exP H™<AO «tf-2) (*) (io) 
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R,/Fb 

FIGURE 1. (Left) The curves Tj and T± are plotted for two alternating ring patterns of vortices 
with N = 2 (in the region where Ri > R2) and N = 3 (in the region where Ri < R2). The shaded 
area represents the region of the (R^,R.2) plane where vortices having strengths of different sign 
are required for the equilibrium. (Right) Same for N = 4 {R\ > R2) and N = 5 (Ri < R?). 

the system is decoupled into 4x4 systems having the form 

d_ 
dt 

( A<£ \ 
A(1) 

A(2)* 

^ 771 -^771 &711 ■*  T7t 

(D_m)* (C_r)* (F_mr (£-«.)* 
_£,m --^m -Cm ~D'm 

\{Fimy {E-_my (Dimy (c-_myj 

( Af!> \ 
Am> 

A(_t 

being 

-y,i?2 

r>„ = *(. 
^2l 

1^1 
■Qm+Mx 

\Zi\2 

&)BW& Mi 
Zi 

with 

Mm(z) 
N 

{ 
mzm^1 + (N -m)zN+m-\ m e [0, N] 

(1 _ zNf A \ -mz*"-1 + (N + m)zN+m~\   m e [-JV, 0] 

and 

0m = ^{\m\-l)(\m\-N+l) 

(11) 

(12) 

(13) 

(14) 
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FIGURE 2. Region of stability (blank area) and of instability (shaded area) in the (A^ife) 
plane for a double alternating ring of vortices with N = 3, with respect to the modes with m = 0 
(Ri < R2) and m = ±1 (i?i > R2). The curves Fj and Tj are also reported. 

The coefficients indicated by " are obtained by exchanging Z\ with Z% and 71 with 
72. Each system (11) describes the evolution of a collective mode of the vortex 
pattern. The equihbrium configuration is stable if all the eigenvalues of the matrix 
of system (11) are real. In this case, the mode represents an oscillatory motion of 
the vortices around their equihbrium position. 

The double alternating ring with N = 3 is considered in detail. In this case, the 
eigenvalues must be calculated for TO = 0, 1, 2, or, alternatively, for m = 0, ±1 (in 
fact, Am = Ajv+m)- As the eigenvalues for m = — L are the complex conjugates of 
those for m — L, only two calculations are necessary. For m = 0, at least one of the 
eigenvalues must vanish. In fact, by simply rotating the entire configuration, a new 
equilibrium is found; thus, the eigenvalue corresponding to that perturbation must 
be zero. Considering that the eigenvalues for m = 0 are conjugate, the eigenvalue 
equation must have the form A4 + a2X

2 = 0, and the condition of stability reduces 
to a2 < 0. The region of stability for the m = 0 and m = ±1 modes in the plane 
(Ri, R2) are shown in Fig. 2. 

NONLINEAR EVOLUTION FOR THE M = 0 MODE 

The TO = 0 mode corresponds to a situation in which two rings of equally-spaced 
vortices rotate and change their radius independently. The nonlinear evolution of 
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the mode was studied by Arcf [3] for an unbound system, by introducing complex 
quantities, Z\(t) and Z2{t), such that: 

&1,2)(*) = zh2{t) exp (iipn) = Pifi(t) exp (i$i,2(«)) CXP (*Vn) (15) 

From Eq.(l), one obtains the equations governing the time evolution of Z\ and Z2, 
which can be cast into a complex Hamiltonian formulation, as: 

.   dz*a    dm   .   dza      dm 
tlair = dz:'nair = -dz;>a = 1>2 (16) 

where the Hamiltonian of the problem is defined as 

^{Zi,Z2,Z[, Z%) 
2      ( I \Z   \2N 

J2 \ -"7a \Za\2 + (N-1) rt log \Za\ - ii log I 1 - i-^- 
(17) 

+7i 72 log ^i  - Z%\   - 7J 72 log m ' 
The basic properties of the motion can be determined by noticing that two constants 
of the motion exist: l)the Hamiltonian H; 2) the quantity L = 71/9? + ~i2p\, related 
to the angular momentum of the vortices. By writing pi and p2 in terms of L and 
of pz/pi, and considering that H is a function of pu p2 and A<J> = <E>2 - $1, one can 
conclude that the trajectory of the system in the (A$,p2/Pi) plane occurs on the 
curve 

H L (L, ^ ,p2 (Y, gV A$| = Const (18) 

Trajectories obtained from Eq. (18) confirm the linear analysis, for they show '0' 
and 'X' points for stable and unstable configurations, respectively. 

Acknowledgements. The author thanks Prof. Roberto Pozzoli (University of 
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for encouragement. 
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Abstract. The diocotron instability in Penning traps is studied with a new simulation 
code based upon the point-vortex method. The equations of motion for the computa- 
tional particles are solved by using the fourth-order Runge-Kutta method. Cylindrical 
coordinates are used in the solution of the Poisson's equation, allowing the boundary 
conditions for the electric potential to be applied exactly; moreover, an efficient al- 
gorithm based on the Fast Fourier Transform can be employed. The code has been 
validated by considering the linear evolution of the diocotron instability. Comparisons 
have shown excellent agreement between the simulation results and the ones obtained 
with the linear theory. 

INTRODUCTION 

The study of the time evolution of the particle distribution in a Penning trap is 
an important topic in the physics of nonneutral plasmas. The discovery that the 
electron distribution can evolve towards stable configurations of vortex crystals [1] 
has been recently reproduced successfully by Schecter et al. [2] with a simulation 
code solving the classic 2D drift-Poisson model. According to this physical model, 
the evolution of the electron density, n(r,9,t), is governed by the following set of 
equations [3]: 

£ + v.Vn = 0 
dt 
v = — ez x V$ (1) 

-£>z 
V2$ = — 

£o 

where the velocity field, v(r, 6, t), is given by the E x B drift, and the electrostatic 
potential, $(r, 6, t), is calculated by solving the two-dimensional Poisson's equation. 
The conclusions of the work by Schecter et al. represent a very important result, 
for they prove that Eqs.   (1) are an appropriate model for the study of vortex 
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evolution. In this framework, the Authors have developed a new Particle-in-Cell 
code in order to obtain high-accuracy results for the long-time evolution of the 
electron distribution. The new code presents some peculiarities, which are different 
from the normally-used codes and would allow highly accurate simulations, in the 
Authors' opinion. In order to test the precision of the code, the simulation of the 
diocotron instability has been considered. In fact, whenever a small perturbation is 
introduced, the evolution of the system can be calculated accurately by solving a set 
of linearized equations obtained from Eqs. (1). On the other hand, the simulation 
of such a situation represents an important benchmark for a PIC code, in which 
the numerical noise could in principle hide the phenomenon one would observe. 
The comparisons between the results of the PIC simulation and the solution of the 
linearized equations, which are presented in the last part of the paper, show the 
excellent performance of the new code and prove that the numerical noise does not 
alter the physical evolution of the system. 

DESCRIPTION OF THE SIMULATION CODE 

The numerical solution of Eqs. (1) has been performed by implementing a 
Particle-in-Cell code [4], in which computational particles are employed to rep- 
resent a large number of real particles, which are described by the guiding-center 
approximation. The code is constituted by three parts: the Poisson solver, the 
particle-grid interpolation and the particle mover. The implementation of each 
part of the code has been performed by taking into account the peculiarities of the 
physical system to be simulated. Here follows a brief description of the techniques 
employed: 

• Poisson solver 

Due to the geometry of the physical system, cylindrical coordinates (r, 6) are 
the most appropriate ones in the solution of the Poisson's equation. In fact, they 
present two advantages: the former is the possibility to exactly impose the bound- 
ary condition for the potential, <f>(Rc, 0) = 0 (being Rc the radius of the cross 
section of the trap); the latter is that, by using cylindrical coordinates, the Pois- 
son's equation can be solved with an efficient algorithm based upon the Fast Fourier 
Transform. In fact, by taking the discrete Fourier Transform of the 0-discretized 
equation for $Q(r) = <&(r,2-Ka/Ne) : 

19 (r^] + \^-llz + ^=e-^,a = Q,l,..,Ne-l     (2) 
r dr \   dr )     r2 AÖ2 eo 

a set of decoupled differential equations is obtained for the Fourier components of 
the potential, $k(r)'- 

M 
2 

$fc = ^^, k = 0,l,...,Ng-l (3) 
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Once the Eqs. (3) are solved numerically, the potential distribution is reconstructed 
by using the inverse transform: 

N„-l _ 

*0(r) = — J2 $^r) exp{2irika/N9), a = 0,1,..., Ng - 1 (4) 
0   fc=0 

• Particle-grid interpolation 

The interpolations between grid and particles and vice versa are performed by 
means of the classic Cloud-in-Cell method [4]. According to this procedure, the 
electric charge of a particle P having coordinates (r>, 6P) is assigned to the four 
nearest grid points, by using an (r, #)-bilinear weighting. More precisely, if the 
coordinates of these four grid points, A, B, C, D are (R+Ar, 9), (R+Ar, 6+A9), 
(R,Q) and (R, 9 + A8), respectively, the fractions of charge assigned to each cell 
are 

WA = WrWe, wB = Wr(l - We), , , 
wc = (l-Wr){l-We),   wD = {l-Wr)We, () 

being 

(rP + R+Ar){rP-R) ^-9 
2rPAr Au 

Slightly different expressions are used when a particle approaches the center or the 
boundary of the domain. 

In order to provide a precise, noiseless representation of the initial electron den- 
sity distribution, computational particles can have different charge. In practice, 
if a given cell contains initially M particles, each particle is assigned 1/M of the 
charge pertaining to that cell. 

• Particle mover 

The equations of motion for Np computational particles of coordinates 
{ri,r2, ...,rjvP} and constant charges {ft, #2, ■■-,qNP} can be written formally as 
a system of differential equations: 

dv 
—?■ =Vp({ri,r2,...,rJvF},{<7i,g2,"-,<?Np}), P= 1,2,...,NP (7) 

where the function vp contains the particle-grid interpolation, the solution of the 
Poisson's equation, the evaluation of the electric field on the grid, the interpolation 
grid-particle and the calculation of the E x B drift. The system (7) can be solved 
by using classic techniques of the numerical analysis. After a number of tests, the 
fourth-order Runge-Kutta method has been chosen, as the most effective in terms 
of CPU time. 
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SOLUTION OF THE LINEARIZED EQUATIONS 

When perturbations of  small amplitude are introduced in an equilibrium con- 
figuration, Eqs. (1) can be linearized, obtaining 

(  dnx -r- + vx • Vn0 + v0 • Vni = 0 
dt 

vi = — ez xV$,, V2$! = —i 
Bz e0 

(8) 

where the quantities labelled by 0 and 1 refer to the unperturbed configuration 
and to the perturbation, respectively. Equations (8) can be further simplified by 
considering the evolution of a single normal mode, in which every quantity depends 
on 9 as exp(ik0). A system of equations can be written for the amplitudes riitk(r, t) 
and $i,fc(r,i), as [3] 

dnly ik   (d<&0 _ dna ~ 

B,r \ dr     '       dr 
= 0 

dr 

hi. 

7*1,< 

(9) 

Equations (9) can be solved analytically when the unperturbed density profile no(r) 
is piecewise constant, as the problem presents a finite number of time eigenvalues 
[3], from which the growth rate of the instability can be immediately evaluated. For 
a continuous density profile, both discrete and continuous eigenvalues are present 
[5, 6]. In this case, a simple comparison with the simulation code can be obtained 
by solving numerically Eqs. (9). In fact, by considering n^k and $lfc only for a 
finite set of iVr radial positions ra = aRc/Nr, Eqs. (9) can be approximated as 

dfii,* 
+ ik (Ani / 

di 
Lfc$iifc = nlife 

,) 0 
(10) 

where A, B and Lfc are sparse matrices, which are obtained by discretizing the 
space operators appearing in Eqs. (9), while n^. and «J^^ are the unknown vectors 
for the density and the potential perturbations, respectively. Finally, a system of 
linear differential equations for $lfc 

L, 
'   dt 

ik (B - ALfc) $iifc (11) 

is obtained. The system can be solved numerically with very high precision. In the 
rest of the work, the initial value for $!_*. will correspond to a density perturbation 
Siifc(r) proportional to the unperturbed density no(r). 
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RESULTS 

The PIC code has been validated by comparing the simulations with the results 
provided by the linear theory. Two different categories of unperturbed density 
profiles have been considered: staircase and continuous profiles. Here follow the 
results for two different profiles, one for each category. 

For the first category, a hollow-ring distribution has been considered, where n0(r) 
is constant for 0.5fic < r < 0.7RC and zero otherwise. Excellent agreement was 
found between the growth rates obtained from the results of the PIC code (using 
45,000 particles) and the analytically-calculated values of the time eigenvalues u 
[3]. In fact, by exciting the k = 2 and k = 3 modes (the k = 1 mode is stable), 
Im(oj/u>D) has been evaluated from the PIC simulations as 0.1467 and 0.2550, 
respectively, to be compared with the exact values, 0.1466 and 0.2528. 

As an example of continuous profiles, the following density distribution: 

™2    / v*" 

, \      I   Const x —    1 - — I   ,       r <b /10N 
n0(r) = { b2 \       b2J (u) 

0 otherwise 

with b = Rc/2, has been considered. The PIC code has been used with the initial 
conditions n{r,6,t = 0) = n0(r) + 10"3n0(r)cos(fcö), for k = 1,2,3. A space 
discretization with Nr = 995 and Ne = 256 was employed. One particle was placed 
initially in the center of each cell, with a charge that was proportional to the density 
in that cell. During simulation, the dimensionless mode amplitude, defined as 

,     „2      IoCMr,t) 
\\M2 = -r-z  

Jo    *o(r,0) 

2 
r dr 

(13) 2 
r dr 

has been evaluated. The same quantity has been calculated by using a numerical 
code to solve the linear model, Eq. (11). The results of these calculations are 
presented in Fig.l. As can be observed, the results of the PIC code are again in 
excellent agreement with those of the linear theory and the growth of the instability 
is reproduced correctly for many orders of magnitude. As predicted by Rosenbluth 
and Smith [7], the k = 1 mode exhibits an algebraic instability. In order to show 
the effect of the space discretization, three different couples of values for (Nr,Ne) 
have been used in one case (k = 2). 

These results, together with many others which are not presented here, lead 
to the conclusion that the new code provides a highly accurate solution for the 
equations governing the evolution of the charge density in a Penning trap. 

Acknowledgements. Work performed in the framework of an Italian research 
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FIGURE 1.   Comparison between PIC calculations and linear theory. The evolution of the 
amplitude for the k = 1,2,3 modes is shown for a continuous density profile [ Eq. (12)j. 
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Abstract. A two-dimensional numerical code for the kinetic description of the electron 
dynamics in a Penning-Malmberg trap has been developed. The code solves the Vlasov 
equation for the electron distribution function in the guiding center approximation, 
coupled to the Poisson equation for the electrostatic potential. In the present version 
of the code, the drift velocity is given by the E x B-drift. The present code constitutes 
the first step of a numerical project for the solution of the gyrokinetic Vlasov-Poisson 
system of equations in a 3D cylindrical geometry. 

In this paper we describe the two-dimensional numerical code that we have de- 
veloped so far for the kinetic description of the electron dynamics in a Penning- 
Malmberg trap. In the present (bounce averaged) version of the code effects due 
to the finite axial length of the system are neglected, and the considered equations 
are isomorphic to the Euler equations which govern the flow of 2D inviscid incom- 
pressible fluids, with free-slip conditions at the boundary. The obtained results 
will then be suitable for comparison with the existing 2D vortex-in-cell simulations 
[1]. The long term aim of our project is to describe the 3D nonlinear dynamics of 
a nonneutral plasma, and in particular the influence of the axial electron motion 
on the 2D vortex dynamics for different values of the ratio between bounce and 
rotation frequencies (the so-called "rigidity" parameter). 

In low density pure electron plasmas confined in Malmb erg-Penning traps [2] 
the characteristic plasma rotation frequency wr is much smaller than the plasma 

frequency wp 

^^«1 (1) 
up      2wc 

where wc is the electron cyclotron frequency. In addition, the characteristic rotation 
velocity, vg — r wr is much smaller than the velocity of light c, 

--^äJ-«1- (2) 
c       2cu>c      la. uc 
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Here de — c/wp is the electron skin depth and r is the radius of the plasma col- 
umn. In this regime we can adopt a purely electrostatic description of the plasma 
dynamics, with the electric field given by E = -V$, and describe the motion of 
the particle gyro-centers in terms of the particle drift equations 

R 
1 B i 1,.     (d „    \ 
-j— \ VE + — b x    — vE + vE • VvE Jcm [ wc        \ot ) 

+ V* b + J\7 x b + —V x vE 
wc m I 

v- lB V\\ 1 
b + -^V x b + —V x vE 

wc ui. m 
E - ( ^-vE + vE • Vvj -V5 

TO 

where vE = cE x B/B2 is the particle E x B-drift velocity and 

TO 
^b • V x b + —b • V x vE 

represents the Jacobian of the transformation (r, v) —> (R, y., V\\,ip), <p being the 
gyro-angle, and E and B are the self-consistent electric and magnetic fields. To 
leading order in the ratio (wr/wc)

2, and assuming the externally imposed magnetic 
field to be spatially homogeneous, the gyrocenter motion is simply given by 

R = vE + V»b,    Vn = -2-E • b. (3) 

Neglecting temperature effects in the perpendicular plane the gyroaveraged 
Vlasov equation reduces to the drift kinetic equation, 

dF ■  dF 
-+K.VF+Vllwr0; Vz$ -47T/3, (4) 

D - 

P = 1- JdpdV\\F(R.,ii,Vn,t), (5) 

where F = F(R,/x, Vj|,<) is the distribution function of the guiding centers 
and the conservation of the total number of guiding centers is expressed by 
/ dfidV^dR. Jc F — const.. 

The ratio between the characteristic time of the parallel dynamics and the rota- 
tion period is measured by 

Wfc 
(6) 

where ut ~ vthe/2L is the bounce frequency of the electrons along the magnetic 
field lines, vthe is their thermal speed and L is the trap length.   If the rigidity 
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parameter W(,/wr is large, electrons bounce back and forth many times before com- 
pleting an azimuthal rotation and the plasma response, on the rotation time scale, 
is determined by the bounce averaged kinetic equation. Then, Eq.(4) reduces to 

^- + vE-Vxi? = 0 (7) 
dt 

where all quantities are now bounce averaged, and depend on time and on the 
coordinates perpendicular to the magnetic field only. Integration of F, over p, 
reduces simply to the particle density n. In this equation the effects due to the 
dependence of the plasma length on r , which arise from the r, z dependence of 
the confining potential, as discussed in [3] , are neglected. In order to estimate a 
characteristic rotation frequency for inhomogeneous configurations, we define 

< u,r >= r fR 9-^F dvdO    I   r [R Fr drdO . (8) 

In the present version, the code solves the drift-kinetic equations in a two- 
dimensional cylindrical geometry for a uniform magnetic field at zeroth order in 
the guiding center approximation. Writing the E X B-drift velocity in terms of the 
electric potential $, and considering explicitly the case of the electron density ne, 
Eq.(7) together with Poisson's equation can be written as 

(d       c9$9       cWfl\ , , 

{ll^r^w)^9'^4-^6^ (10) 

where polar coordinates (r, 9) are used. The boundary condition for the potential 
is given at the wall of a circular container. These equations are discretized on a 
bidimensional polar grid (rj.flj), with r{ = i • dr {i = 0,... ,nr; dr = l/nT) and 
6 = 2ivj-d6 {j = 0,... ,nB; d6 = l/ne). 

The Vlasov equation is solved by means of a finite volume technique, by advanc- 
ing in time the distribution function averaged over the grid cells 

n£ij = -— I*'  rdr [ '  ne{r,6)d9        i = l,...,nT    ;    j = 1,... ,ne. (11) 
Ti^i/2drdV ,/rj_i        J«j_i 

The time advancement is explicit and it is obtained by means of a Runge-Kutta 
scheme. 

For the Poisson equation, fourth order finite differences are used. The equation 
is first (fast) Fourier transformed in the azimuthal angle 6 obtaining a system of 
ordinary differential equations in r 
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FIGURE 1. The mean density radial profile at different times (normalized on wc/vi ) for two 

stable configurations: (A) step-like profile, < wT >= 0.5, and (B) smoothed monotonic decreasing 

profile, < u>r >= 0.47. 

1   A      A rn^ 
-y-r—$m(r)-—$m{r) = 4-Kene:m(r)        m = 0.... ,[(n« - l)/2], (12) 
r ar  ar r' 

where 3>m(r) and ne>m are the amplitudes of the m-th Fourier component of po- 
tential and density, respectively. The solution is then obtained by an inverse (fast) 
Fourier transform. The nodal values of the distribution function required for the so- 
lution of the Poisson equation are obtained by means of a reconstruction algorithm 
based on the computation of the "primitive function" [4] 

G(r,0) = I' r' dr' f dff ne{r',6'), 
Jo Jo 

i     i 
t = 0,.. ,nT j = 0,...,ng. 

k=l 1=1 

The nodal values are then obtained by 
1      Q       O 

i = Q,...,nr 0, ,nB. 

(13) 

(14) 

(15) 

A standard FFT technique is used for the computation of the derivatives in the 
azimuthal angle, while for the radial derivatives a three-point combined compact 
difference scheme is employed [5]. The scheme computes both the first and the 
second derivative at the same time. 

The main numerical problem of the present version of the 2D Vlasov-Poisson 
numerical code is the onset of a numerical instability when strong gradients (or 
discontinuities) are formed. This instability is responsible for the appearance of 
growing spurious oscillations which rapidly lead to a numerical divergence of the 
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';--■! (3) 

ii~\ 
sW w 

FIGURE 2. The evolution of the I = 2 mode in the case of the initial (smooth) density profile 
of Fig. 1, frame (B). The four snapshot are the shaded density fluctuations at (A) t=0, (B) 

t=10, (C) t=40, {D) t=150, respectively. Here < uT >= 0.47. 

distribution function. The onset of the numerical instability in the presence of 
"strong" density gradients is shown in Fig. 1 where we plot at different times (nor- 
malized on u>c/^p) the mean density radial profile in two different stable situations. 
The density is perturbed at t = 0 by a small amplitude (e = 0.01), I = 2 mode. 
In the case of an initial step-like density profile, frame {A), we see that numerical 
oscillations are generated close to the discontinuity and then propagate and accu- 
mulate at the origin. On the other hand, when the density gradient is resolved 
by the numerical mesh, frame {B), the density profile remains unchanged. The 
evolution of the corresponding density fluctuations up to t - 150 is shown in Fig. 
2. We see that a filamentary structure of the mode is produced in correspondence 

of the density gradient. 
In order to investigate the process of vortex formation by an initially unstable 

configuration, we have used the following initial ring-like density profile, F, and 

perturbation, SF, 
k=8 

F{r) = e-
90(r-°-5>2,    Sf - e £ sin{k0) e 

■90(r-0.5)2 

(16) 
k=2 

with e = 0.01. In Fig. 3 we show the evolution of the instability at four different 
times. At t = 35, frame (D), a number of vortices are generated. Unfortunately, 
after that time, the discontinuities formed between the larger vortices lead to a nu- 
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(D) 

FIGURE 3. The evolution of an initially unstable ring-like density profile (see Eqs. 16). The 
four snapshot are the density isocontours at (A) t=0, (£) t=20, (C) t=25, (D) t=35, respectively. 
The resolution used in this simulation is NT — 150 and Ng = 256 and < wT >= 0.16. 

merical divergence, as expected from what discussed above. A number of standard 
methods capable of correctly describing the formation and evolution of discontinu- 
ities are presently under investigation. 

The extension of the code with the aim of describing the evolution of the system 
in a five-dimensional phase space (three spatial coordinates and two coordinates 
in velocity space) is also presently under development (in the electrostatic case, at 
first). The component of the velocity in the direction of the magnetic field, v\\, and 
the magnetic moment, /x, are the coordinates in velocity space in the general case. 
Since the derivative with respect to the magnetic moment does not appear in the 
Vlasov equation, the problem is in fact formally solved in a four dimensional phase 
space. 

This work was supported by "ex 40%" MURST funds (Italian Ministry for Uni- 
versity and Scientific Research) 
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Abstract. Preliminary results on the drift dynamics of electrons in a Penning- 
Malmberg trap, obtained by means of a two-dimensional electrostatic fluid code, are 
presented. The code solves the continuity equation for the electron density in the 
guiding center approximation, coupled to the Poisson equation for the electrostatic 
potential. The drift velocity is simply due to the E x B-drift. 

INTRODUCTION 

The results presented in this paper are relevant to the two-dimensional dynam- 
ics of a pure electron plasma. They have been obtained with the first, simplified, 
version of a more complex code for the solution of the drift-kinetic Vlasov-Poisson 
system of equations in a 3D cylindrical geometry [1]. This code will support the 
experimental activity presently under development at Milano University, based on 
a Penning-Malmberg trap for electron confinement, aimed at the study of coherent 
structures (using the methods developed in San Diego [2] [3]), and at the inves- 
tigation of single particle regimes [4]. In its present version, the code solves the 
drift-kinetic equations for a uniform magnetic field at zeroth order in the guiding 
center approximation. At this level of approximation only the E x B-drift is taken 
into account. In the two-dimensional case, after integration of the Vlasov equation 
in velocity space, the resulting equations are equivalent to the description of the 
system in the cold-fluid guiding-center approximation with me ->• 0. 

Writing the E x B-drift velocity in terms of the electric potential $, and consid- 
ering explicitly the case of electrons, the equations are written as 

id     10$ 0      10$ 9 1 m 
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(I d   d      1 d2\ Ä,   „   x 

[räffr + ^W) $(r'M) = "e(r'*>')' (2) 

where ne is the electron density, and polar coordinates (r,0) are used. Eqs. (1)- 
(2) are isomorphic to the Euler equations which govern the flow of 2D inviscid 
incompressible fluids with a single sign of the vorticity. The boundary condition 
for the potential is given at the wall of a circular conductor surrounding the plasma 
(this corresponds to a free-slip boundary condition in the fluid analogy), and at the 
wall of an internal circular conductor, when it is present. In Eqs. (l)-(2), the radial 
coordinate,?-, is normalized over the radius, R, of the outer circular conductor, the 
density, ne, over a characteristic density, ne, the potential, $, over 4weneR

2 and 
the time, t, over wc/w

2, being wc the electron gyro-frequency and u>p the electron 
plasma frequency (computed with the characteristic density nc.) 

Our aim here is to test the capability of the code to properly describe typical 
situations that will be faced in the experiments. Therefore, we have considered 
different cases, suitable for comparison with analytical estimates. First, the devel- 
opment of azimuthal perturbations of an annular equilibrium density distribution, 
for the cases of sharp and soft plasma boundary. Then, two cases where boundary 
conditions of the potential are changed: the first refers to the influence of a central 
axial rod on stability, the second to the process of plasma deformation starting from 
a cylindrical shape, to a new equilibrium when static potential perturbations are 
applied to the external boundary. Finally, we have considered the more complex 
case of evolution of a perturbation in a hollow column. Deliberately, no spectral 
filter, nor artificial viscosity effects have been introduced in the code. 

LINEAR THEORY 

The newly developed code has been tested at first against the linear perturba- 
tion theory. The case of an annular step function has been considered, for which 
analytical results are known in the literature [5]. An initially perturbed density 
ne(r, 6,t = 0) = n [H(r2 - r) - H(ri - r)] [l + e cos(W)} has been considered, where 
H represents the Heaviside function. Fig. 1 refers to n = 0.4, r2 = 0.6, n = 1. 
e = 1 • 10-3 and / = 3, and shows the time evolution of the (averaged) spectrum 
of the potential, /J dr |$;(r,i)|2 (for / = 3), computed numerically (solid curve) 
compared with the result expected analytically (dotted curve). 

The agreement of the numerically obtained growth rates with the analytical 
results is quite good within the time scale of the linear evolution. 

However, the full evolution cannot be described correctly by the present code as 
it becomes unstable in the presence of "strong" density gradients [1]. The results 
become therefore unreliable after a certain time (in the specific case, after t ~ 60). 
The problems mentioned above are avoided if the evolution of a perturbed "smooth" 
profile is considered (see Fig. 2). An initial perturbed electron density of the form 

(r,M = 0) = n [A + (r/rp)
2} [1 - (r/rp)

2]2 H(rp - r) [1 + ecos(l6)} has been n, 
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FIGURE 1. Average square Fourier amplitude of the potential, for / = 3, versus time. The 
solid curve represents the numerically obtained result and the dotted line is the analytical result, 
exp(27i), respectively. For the parameters of the run, the theoretical growth rate 7 ~ 0.1223. 

50 100 

t 

150 200 

FIGURE 2. Average square Fourier amplitude of the potential, for I = 3, versus time. 
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FIGURE 3. Average square Fourier amplitude of the potential, for / = 3, versus time (initial 
evolution) for an annular plasma confined between two concentric circular conductors. The solid 
curve refers to $rod — +0.01 and the dotted curve to $rorf = -0.01, respectively. 

considered, with the parameter A satisfying 0 < A < 1. Fig. 2 refers to A = 0, 
rp = 0.5, n = 27/4, e = 1 • 10~3 and / = 3; no numerical instability has occurred 
within the time of the run. These results coincide with those obtained with a 
simplified version of the code which solves the linearized Vlasov-Poisson system. 

CENTRAL CONDUCTOR AND 2D PLASMA SHAPING 

The code has also been used to treat the case in which a central conductor with 
radius rd is present (in this case the confinement region of the plasma becomes 
annular), and different boundary conditions are imposed on the conductors. Fig. 3 
refers to the stabilizing effect of a negative potential cf>rod, applied to the central 
conductor, while the outer boundary is at zero potential. This figure shows the 
evolution at short time of the averaged squared perturbed potential for a positive 
4>rod (growing perturbation) and for a negative (f>rod, with the same absolute value 
(stabilizing effect). An initially perturbed density profile of the form ne(r,6,t = 
0) = n[l - ((r - rc)/rp)

2]4 [H(rc + r„ - r) - H{rc - rp - r)] [1 +ecos{W)] has been 
considered. The thickness of the annular plasma is 2rp. The results shown in Fig. 3 
refer to rd = 0.1, rc = 0.55, rv = 0.15, n = 1, e = 10~3 and / = 3. 

The 2D plasma deformation towards a new equilibrium when an azimuthally 
dependent potential is applied on the outer boundary is demonstrated in Fig. 4, 
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where the time evolution of the density contours starting from a purely radial 
distribution is shown. An initial density profile of the form ne(r,t = 0) = n[l - 
(r/rp)

2]4 H(rp - r) has been considered in this case, and the boundary condition 
for the potential has been chosen as <f>(r = 1,9) = -esm(W). The results shown in 
Fig. 4 refer to rp = 0.6, n = 1, e = 0.08 and / = 3. Note that the plasma tends 
to be "repelled" from the azimuthal positions where the applied potential on the 
conductor is positive, and vice versa [6]. 

INSTABILITY OF A HOLLOW COLUMN 

The code has been used for the investigation of the time evolution of an initial 
perturbation with / = 1 in a hollow density distribution. The linear theory of this 
problem has been developed by Smith and Rosenbluth [7]. The time evolution of 
the average square amplitude of the / = 1 Fourier mode is shown in Fig. 5. The 
equilibrium density profile in the simulation is similar to that considered in [7]. 
The observed oscillations seem to agree with the linear solution reported in [7]. We 
observe also a linear growth of the amplitude squared up to t « 250. 

-1.0       -0.5       0.0 0.5 1.0 -1.0      -0.5        0.0 0.5 1.0 

-1.0      -0.5        0.0        0.5 1.0 -1.0      -0.5        0.0 0.5 1.0 

FIGURE 4. Evolution of the density due to a static perturbation of the potential 
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CONCLUSIONS 

The presented cases, seem to confirm the basic validity of the Vlasov-Poisson code 
in its 2D version. However, taking into account the caveat mentioned here and in 
[1], significant adjustments are required to make it suitable for the investigation of 
phenomena on very long time scales. 

This work was supported by "ex 40%" MURST (Italian Ministry for University and 
Scientific Research) funds and INFM (Italian National Institute of Physics of Matter) 
Sect. A funds for Advanced Projects (PAIS) 
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FIGURE 5. Average square Fourier amplitude of the potential, for / = 1, versus time. 
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Abstract. 
We discuss an analogy between magnetically confined nonneutral plasmas and geo- 

physical fluid dynamics. The analogy has its roots in the modified drift Poisson model, 
a recently proposed model that takes into account the plasma compression due to the 
variations of the plasma length [1]. The conservation of the line integrated density in 
the new model is analogous to the conservation of potential vorticity in the shallow wa- 
ter equations, and the variation of the plasma length is isomorphic to variations in the 
Coriolis parameter with latitude or to topography variations in the quasigeostrophic 
dynamics. We discuss a new class of linear and nonlinear waves that owe their exis- 
tence to the variations of the plasma length. These modes are the analog of Rossby 
waves in geophysical flows. 

There is a well-known analogy between nonneutral plasmas confined in a 
Penning-Malmberg trap and two-dimensional inviscid fluids. In this analogy the 
plasma electrostatic potential and density correspond to the fluid streamfunction 
and vorticity respectively [2]. This analogy has proved to be particularly useful 
in the experimental study of various fluid dynamics problems using nonneutral 
plasmas, e.g. Ref. [3]. The goal of this paper is to study a new analogy between 
nonneutral plasmas and geophysical fluid dynamics. This analogy is based on 
the modified drift-Poisson system, a recently proposed model that generalizes the 
usual drift-Poisson equations by taking into account the variations of the plasma 
length [1]. The modified drift-Poisson model consists of the conservation of the 
line-integrated density and the Poisson equation, in dimensionless variables 

§-t(nL) = 0,        V2<£ = n, (1) 

where n{r,9,t), <j>(r,0,t), and L(r,6, t) are the density, potential and length of the 
plasma respectively, D/Dt — dt+u-V with u = z x V</> the E x B drift velocity, 

^  e-mail: diego@lanl.gov 
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and V2 is the 2-dimensional (perpendicular to the magnetic field) Laplacian. As 
illustrated in Fig. l-(a), when the plasma length varies, due to the curvature of the 
sheaths at the ends, charge conservation of plasma columns aligned in the direction 
of the magnetic field implies a variation of the plasma density. The model (1) was 
originally proposed to resolve a controversy regarding the stability of the m = 1 
diocotron mode, see Refs. [4,1,5]. 

For the present discussion we will assume L = Lo(r). A more general model for 
L, which incorporates free boundary effects on the plasma length, is discussed in 
[1]. For L = L0(r) the modified drift-Poisson model (1) becomes 

^{***<}-(£) £*<='■ 
where the prime denotes derivative with respect to r, and {/, g} = 1/r (dTf dog — 
dTf dgg). Writing 4> = 4>o{r) + <j>{i\ 6, t), and neglecting nonlinear terms in <j> we get 
the linearized version of Eq. (1) 

£0 + {^,} + {Av*}-(^)# = o. (3) 

where no(r) = V2^o is the equilibrium density. The precise form of L0(r) de- 
pends on the numerical solution of the plasma equilibrium equations. However, as 
discussed in Ref. [1], Lo(r) can be parametrized as 

L0(r) = L0(0) [l - Kr2]  , (4) 

where Lo(0) and the curvature K depend on the equilibrium parameters. Typically 
K>0. 

ANALOGIES WITH GEOPHYSICAL FLOWS 

When the variation of the plasma length L is taken into account the plasma 
density n is not conserved, and the analogy with the two-dimensional Euler equa- 
tion breaks down. However, there remains a new and interesting analogy with 
geophysical fluid dynamics based on the conservation of the line-integrated density 
nL in Eq. (1). In addition to its intrinsic theoretical interest, this analogy is impor- 
tant from the perspective of modeling geophysical flows with nonneutral plasmas 
experiments in Penning-Malmberg traps. 

To explain this analogy consider a uniform density, incompressible, rotating fluid, 
shown in Fig. l~(b), with free surface z = j](x,y,t), and bottom topography z = 
—H0\l — A(r)]. This system is commonly used in geophysical fluid dynamics as 
the starting point in the development of simple models of the oceans and the 
atmosphere [6]. An important parameter in rotating fluid dynamics is the Rossby 
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number defined as Ro = U/(2QL) where U is a horizontal velocity scale, L is a 
horizontal length scale, and ft is the rotation frequency. 

The limit Ro <C 1 is of particular interest in geophysical flows. In this limit, 
because of the Taylor-Proudman theorem, the horizontal velocity u is to a good 
approximation independent of z. If in addition it is assumed that the scale of 
vertical motions is small compared to the scale of the horizontal motions, specifically 
if Ro(H0/L)2 <C 1, we get the shallow-water model which implies the conservation 
of the potential vorticity q in the co-rotating reference frame 

Dq 
Dt 

0, 9 = 
C + 2Q 

H (5) 

where £ is the vorticity and h = n + H0(l - A) is the fluid depth. 
In the non-rotating (inertial) frame Eq. (5) reduces to D[(/h)/Dt = 0 which is 

analogous to the conservation of the line integrated density in Eq. (1) if we identify 
the plasma density n with the vorticity C, and the fluid depth h with the inverse 
plasma length 1/L. 

Topography variations. Neglecting free surface effects (n — 0) and assuming 
A ~ C/2Q ~ Ro we get to first order in the Rossby number 

C + 2ti     _ 2ti 
Ho {I-A) "Y0 

1 + 4 + AW 
+ 0{Ro2) (6) 

On the other hand, a small Rossby number expansion of the advective derivative in 
(5) gives D/Dt = dt + u • V + 0(Ro), where u = z x Vi/> is the geostrophic velocity, 
which is the analog of the E x B plasma drift velocity, iß is the streamfunction, and 
( = V2V»- Accordingly, to first order in Ro the potential vorticity conservation law 
in (5) becomes the quasigeostrophic equation: 

r\ r\ (a) 

z = 0 

z = -Ho 

Y plane 
f=fo-yr' 

z = -Ho(1-A) 

FIGURE 1. Because of charge conservation, when the plasma column shown in (a) is displaced 
to a region of large L it experiences a transverse compression. This effect is analogous to the 
vortex stretching experienced by a fluid column due to topography variations in geophysical flows 
as illustrated in (b). At the same time, topography variations are equivalent to variations of the 
Coriolis parameter with latitude as illustrated in (c). 
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dVli>     Ll ^ ,i     (2?Ltt\  dii 
at {*-**H*r}% = <>- m 

where the prime denotes derivative with respect to r. Writing ip — i/'o(r)+V;(r! ^> *)' 
we get the linearized version of Eq. (7) 

dV2^     f     _2 n     c - _2    -,     /2fiA'\   ö^ 

at 
+ Kv^) + ^,VV,}-(^)  ^ = 0. (8) 

Note that Eq. (2) is different from Eq. (7), but the linearized drift-Poisson model 
(3) is identical to the linearized quasigeostrophic equation (8) if we make the iden- 
tification 2QA'(r) «->■ L'0(r) n0(r)/L0(r). In particular, for L0 in (4) with K > 0, 
A(r) is maximum at r — 0 and decreases with r. 

Coriolis parameter variation. When considering quasigeostrophic motion 
on an sphere, the variation of the Coriolis force with latitude has to be taken into 
account. In particular, the term 2Ü in Eq. (5) has to be replaced by the Coriolis 
parameter f — 2fi sin <p, where <p is the latitude angle. Let ipo denote a reference 
latitude angle and write ip = <po + 6(p. Then, neglecting free surface and topography 
effects (TJ = A = 0), we can expand the potential vorticity as 

g=^«^[/o + C + /3r-7r2 + 0(<V3)] , (9) 

where /o = 2Q sin cp0, ß and 7 are constants, and r = 5ip R with R the radius of the 
earth. As shown in Fig. l-(c), at mid-latitude cos <p0 ^ 0 and q « fo + C + ßr- This 
is the so-called /3-plane approximation [6]. However, near the poles cos<p0 « 0 and 
thus q ~ /o+C—7r2 which is known as the 7-plane approximation [7,8]. Comparing 
Eqs. (6) and (9) we have that the variations of the Coriolis parameter in the earth 
can be mimicked by topography variations if we identify A(r) ■H- ßr — 2jr2. 
This identification is the guiding principle in the modeling of geophysical flows 
with laboratory experiments. In the plasma physics case the analogy is based on 
the identification ß — 2^r -H- L'0(r) no(r)/Lo(r). In particular, for n0 = constant, 
and Lo(r) given in Eq. (4) we have, in the small curvature limit, ß = 0 and 
7 = no K. It should be remarked that this analogy is different from the well- 
known analogy between the Hasegawa-Mima equation for plasma drift waves and 
the quasigeostrophic equation. 

ROSSBY WAVES 

According to the modified drift-Poisson model, Eq. (1), a nonconstant plasma 
length induces a variation of the plasma density. This density variation provides the 
restoring mechanism of a new class of plasma waves in nonneutral plasmas which 
are the analog of Rossby waves in geophysical fluid dynamics. As an example of 
this kind of waves consider traveling wave solutions of the form 
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<t> — fair) + fa (r, mO - ut) . 

Substituting (10) into Eq. (2) we get 

{0o -ur2/2m,L0V
2fa} + {fa,L0V

2ci>0} + {<f>i,L0V
2fa} = 0 . 

In what follows we construct linear and nonlinear solutions of this equation. 
Linear solutions Let 

0O = ft r-72,        4n = f{r)e*n9-*'>, 

(10) 

(11) 

(12) 

for r < rp < 1, where rp is the plasma radius, i.e. n0 = 20, for r < rp, and 
n0 - 0 for r > rp. Substituting (12) into Eq. (11) and neglecting the nonlinear 
term {fa,L0{r)V2fa} we get the following eigenvalue problem for /: 

/" + -/' + r **)-£ 1 = 0, (13) 

where we have defined D = ^imü/ (mtt - u) and \{r) = -L'0(r)/2rL0(r). Equa- 
tion (13) can be solved numerically. However, if A is constant this equation reduces 
to Bessel's equation. This can happen for L0(r) in Eq. (4) in the small curvature 
limit, or if L0(r) is gaussian. In the first case, fa = BJm{Dy/Kr) expi(m6 - ut), 
where Jm is the Bessel function of order m. On the other hand, the solution of 
the vacuum equation V2<f> = 0, is </> = C (r~m - rm) ^M-"*). Matching these two 
solutions using the "jump" conditions [fa = 0, and [r(tt - u/m)fa - n0(r)<f>] = 0, 
where [/] = f(rp + 0) - f(rp - 0) denotes the jump, we get the dispersion relation: 

4K7-
2 

um - mQ, [ 1 ^JL 

rrnn 
(14) 

m=1    n=1 m=2    n=2 

FIGURE 2. Rossby waves in nonneutral plasma. The figure shows contour plots of plasma 
density according to the traveling wave solution in Eqs. (10) and (12). The + (-) sign labels the 
regions where V20i > V20o (V2<£i < V2<£0)- 
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where pmn is determined from the solution of 

2/trjj 
1 

1   / 1 - r2m 

JmiPmn) = OLm pmnJ'm{prnn) , am = —   [ — f—       . (15) 
77!   V 1 + r^7" 

The direction of propagation of these waves depends on the sign of K. For K > 
0, which is the usual case, u>/m < fi. The same happens with Rossby waves 
whose direction of propagation depends on the sign of the topography or Coriolis 
parameter gradient. Figure 2 shows contour plots of this solution for rp — 1 and 
small K. According to the geophysical fluids analogy A(r) <-» - A'(r)/2r +* —ß/2r+ 
7, and thus we have the Bessel's function solution when A is a quadratic function 
or in the 7-plane approximation. 

The main difference between these Rossby modes and the modes of Ref. [9] is 
that the Rossby modes are z-independent compressional modes whereas the z- 
independent modes of Ref. [9] are incompressible. Also, the radial dependence of 
the Rossby modes introduces a radial wave number which has no spheroidal mode 
analogue. 

Nonlinear solutions According to (13), fa in (12) satisfies 

L0(r)V2fa = ^D2fa. (16) 
IT 

For Lo(r) in (4), the right hand side of Eq. (16) is proportional to fa and (12)- 
(13) becomes an exact nonlinear solution because the term {fa, Lo(r)V2fa} in (11) 
vanishes. This nonlinear solution is a special case of solutions of the form 

4> = sr2/2m + x(r, mB - st) ,        L0{r) [V2
X + 2 s/m] = T(x) (17) 

where s is a constant, and T is an arbitrary function of X- h* geophysical flows a 
nonlinear solution of the form (12)—(13) also exists in the 7-plane approximation 
or when A(r) is a quadratic function. 
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Abstract. An approximate analytic expression for the unperturbed orbits in a nonneu- 
tral plasma is obtained The approximate orbits consist of a constant-velocity portion 
inside the plasma and a sinusoidal turn-around portion in the plasma end. 

INTRODUCTION 

To carry out kinetic theory in nonneutral plasmas a knowledge of the equilib- 
rium (unperturbed) particle orbits is required [1]. An analysis of these orbits for 
nonneutral plasmas with small Debye lengths compared to plasma size will be pre- 
sented here. In addition, it will be shown that a simple model does a good job of 
representing these orbits. This simple model, consisting of constant velocity in the 
plasma interior and harmonic motion in the end, should make it possible to make 
analytic progress on the problem of a kinetic theory for these plasmas. 

PLASMA EQUILIBRIUM 

Consider a nonneutral plasma with midplane radius rp, axial half-length zp. It 
is assumed to be cold enough that A0 -C rp, zp. It is also assumed to be in global 
thermal equilibrium so that the density distribution as a function of distance normal 
to the plasma edge is the same at every point on the edge [2]. Under these conditions 
the equation for the scaled electrostatic potential g — qcj)/kT as a function of the 
scaled axial coordinate ( = z/Ap on the axis (r = 0) is 

9" = l-e-9   , (1) 

with g fts 0 inside the plasma [2,3]. The solution of this equation satisfies g RJ 0 
along the central axis of the plasma, but then g rises rather abruptly, on the scale 
of the Debye length, through the plasma sheath. This causes the density, which is 
proportional to e~9, to fall to zero, defining the plasma edge. 
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To solve this equation, first multiply it by g' and integrate to obtain 

€f= y/2[g + exp(-g) - 1}      =>      d( = dg . (2) 
J2[g + exp(-g)-l} 

To integrate once more to get <?(() would appear to be difficult, but a simple ap- 
proximate result makes further progress possible. The 5-integrand in this equation 
has a remarkable power series: 

1 1    1      g2 g3 g4 

/1      R       1   ncn       11 ncn   '   101   AAI\   '      '" V   / 
V^(5 + exp(-5)-l)      9     6      1,080      12,960      181,440 

All of the higher order terms have very large denominators so that over the range 
g e [0,4] an accuracy of about 1% is obtained from just the first two terms. Note 
that this is the expected physical range for g since the density is proportional to 
e~9. This approximation leads to a simple approximate relation between ( and g: 

C = Mff/sb) + (s-$b)/6      , (4) 

where gQ is the value of g at the place where we choose ( = 0. Since most of the 
interesting physics is at the edge of the plasma it is convenient to set g0 = In 2 
so C = 0 where the density has half of its central value. But other choices are 
sometimes used, so g0 will be left as a parameter. 

It is a little awkward to have ((g) instead of 17(C), but Eq. (4) is easy to solve 
numerically. A simple technique that works over most of the relevant values of ( is 
simple successive approximation with under-relaxation: 

gn+r = (1 - u)gn + ug0 exp [( + (50 - <7„)/6]      , (5) 

with u = 1 for C < 0.5 and u = 2.5/(2 + ()] for ( > 0.5. 

UNPERTURBED PARTICLE ORBITS 

It is now possible to analyze the equilibrium motion of the particles. We will use 
the dimensionless variables ( = z/XD, v = v/vlh = v/^kT/m, and T = wpt, where 
wp is the local plasma frequency in the center of the plasma, and where AD is the 
Debye length there as well. Energy conservation at r — 0 is then simply 

v2
0 = v2 + 2g(Q   , (6) 

where u0 is the scaled particle velocity when it is at the plasma midplane, and 
where we have taken g K, 0 in the center of the plasma. ( Note that this is an 
approximation rather than an arbitrary choice of the zero of potential. We have 
already determined the arbitrary additive constant in g by our choice of 50-   We 
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may take g = 0 at the plasma midplane only because the Debye length is much less 
than the plasma length so that g « 0 for all values of ( well inside the plasma. ) 
The turning point occurs when g(() = gt, where 

9t = vl/2  . (7) 

The particle speed as a function of the scaled electrostatic potential g can now 
be expressed as 

dC/dr = ±jvl - 2g     . (8) 

Using Eqs. (8), (2), and the approximate form of (3) gives 

•äZij-Qtem« , (9) 
4       V2 Jgc     y/gt-g 

where T is the time for one full cycle of the particle bounce motion and where the 
lower limit gc is the exponentially small, but non-zero, value of g in the plasma 
midplane. We can't set it to zero here because its non-zero value is what makes 
the integral include the time it takes for the particle to coast across the nearly 
constant-potential interior of the plasma. Performing the integral (neglecting gc 

except in a logarithmic term) then gives 

upT ^ UQ_ _  1_     I gc_ . _    -„ 
4    ~ 6      u0     \4gt)      ADi/0 

«O + IlnfM^.* 
6      VQ      \ g0 I      &fo 

(10) 

where we have used z = zp at ( — 0 (where g = g0 by definition) and where we have 
also used Eq. (4) to obtain zp/XD RS In (gc/go) - 5o/6 . This formula has been 
tested against exact particle periods in numerically-computed nonneutral plasma 
equilibria, and has been found to be accurate to about 1% from very low velocities 
up to v ÄJ Avth (for particles at r = 0). 

It is useful to break the particle motion up into two parts. The first is the 
nearly ballistic coasting of the particle across the plasma interior and the second 
is the turnaround at the plasma end. Numerical experimentation shows that the 
turnaround motion is well approximated (to better than 5%) by a half-period of 
simple harmonic motion. A good way to fit these two kinds of motion together to 
get an approximation to the real motion is to look at what happens in a quarter- 
period of the particle motion. The particle is first assumed to travel ballistically 
from z — 0 to z = L during time t — td — L/v. Then its motion is assumed 
to be described by z(t) = L + Asinojt(t - td) where I, A and u>t are still to be 
determined. The three conditions that determine these constants are (i) that the 
ballistic velocity match the initial velocity of the harmonic-motion portion: 

ÄLÜt=V    ; (11) 

(ii) that the axial travel distance of the two parts of the motion equals the distance 
from the center of the plasma to the turning point: 

155 



L + A = zp + \DCt   , (12) 

where Q = C(gi) is the value of ( at the turning point; and (iii) that the ballistic 
travel time and the quarter-period of the harmonic turnaround must add up to the 
quarter period of the true motion: 

T/4 = L/v + ir/(2ut)   . (13) 

Solving these equations gives a good approximation to the particle motion along 
the central axis of the plasma. At radii away from the axis they are modified because 
the particle enters the thermal region at an angle, experiencing weaker gradients. 
Because the density profile in the plasma edge is approximately invariant as a 
function of normal distance [2], and since the edge is thin compared to the plasma 
size, a particle at a radius where the angle between the z-axis and the normal in the 
edge is 9 approximately moves axially in the scaled potential function g((cos9). 
Repeating the period calculation in Eqs. (8) and (9) then shows that in the end the 
turn-around time is increased by a factor of cos 6. A careful analysis of this effect, 
leaving the drift time across the plasma interior unchanged and modifying the end 
dynamics, simply leaves the first term on the right side of Eq. (10) unchanged 
and divides the last three terms in square brackets by cos 9. Solving the equations 
taking this effect into account finally gives 

^ = .(n-2)(v/vlh)coS9      s      A = v/Uf      f (14) 

and 

L = zp(r) + 
A D 

41n2 + (u/ü(,,)
2/6 

(?r-4)   v2        g0       4 In 2 
COSÖ 

In   ^-~-    + 
2g0v*J     (TT-2)l2v?h      6      (TT - 2) 

(15) 

where 9 is the angle between the normal to the plasma surface and the 2-axis. 
Note that u>t oc v, with a small non-linear correction, and that this turn-around 
frequency is on the order of the plasma frequency. 

Figure 1 on the next page shows a. comparison of two typical sets of particle phase- 
space orbits from a numerical simulation using a computed thermal equilibrium 
with this approximation. As can be seen, the approximation works quite well, 
except at the larger velocities at r ^ 0 where the errors are on the order of 10%. 
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Theory vs. Simulation: 8» 0.0s 

Theory vs. Simulation: 0=46.0 

1.5 

Figure 1: Orbits from a simulation (solid circles) and from the analytic model 
(crosses) are compared. The 0 = 0 case is at r = 0 and the other is at finite 
radius. The symbols mark time along the orbit and zp0 is zp at r = 0. The 
discrepancy in distance along the orbits between the circles and the crosses is due 
to the approximate orbit period not being quite right, and is worse for r ^ 0. 

CONCLUSION 

A simple approximate form for equilibrium particle orbits in nonneutral plasmas 
has been found. The time it takes for a particle to turn around in the end of the 
plasma is of order l/wp. For Penning trap plasmas of medium aspect ratio, for 
which the mode frequencies are typically comparable to uip, the physics of the end 
should be quite important. In long plasmas the mode frequencies are much less 
than wp, but even though the turnaround time is very short compared to the mode 
period for these plasmas, it is still possible that this small end effect could have a 
strong effect on the also-small damping rates. In any case, these orbits should be 
a valuable tool for doing kinetic theory in nonneutral plasmas. 
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Abstract. 
A "rotating wall" voltage varying as exp(img9 + ikzz - Hit ft) can give steady-state 

confinement of more than 109 charges in a Penning-Malmberg trap at 4 Tesla. For both 
pure ion plasmas and pure electron plasmas, the torque exerted on the plasma by the 
rotating wall exhibits peaks at the frequencies of kz ^ 0 Trivelpiece-Gould modes [1]. 
As expected, modes with / > mefR (i.e. propagating faster than the plasma rotation) 
give positive torque and cause plasma compression; and modes with / < mefR give 
adverse torque and cause plasma expansion. The rotating wall drive also causes plasma 
heating, but cyclotron radiation (in the electron case) and collisions with background 
residual neutral gas (in the ion case) keep the temperature low enough that background 
ionization is negligible. The rotating wall "slip" is typically greater for electrons than 
for ions, because / - m(/fi is proportional to the plasma frequency wp. This contrasts 
with the kz = 0 rotating wall perturbation which couples to crystallized ion plasmas 
with no slip [2]. By increasing the frequency of the rotating wall, we observed a plasma 
central density compression of about a factor of 20. These techniques may be useful 
for a variety of trapping experiments. 

INTRODUCTION 

Non-neutral electron or ion plasmas confined in Penning-Malmberg traps have 
inherent confinement times which are long, but finite. In practice, background 
neutral gas and small confinement field asymmetries exert a drag on the rotating 
plasma, causing slow radial expansion and eventual particle loss. Previous work 
[3] on small ion plasmas has demonstrated radial compression and steady-state 
confinement using laser techniques to apply a torque which counteracts the drag 
on the plasma. However, there is considerable interest in containment of elementary 
particles, including antimatter [4], where laser techniques are not applicable. 
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Recently, "rotating wall" electric fields applied to the end of a column of 109 

Mg+ ions have been shown to give steady-state confinement and compression up 
to 20% of the Brillouin density limit nm [5]. The E x B rotation rate fE of the 
ions is observed to be somewhat less than the wall rotation frequency fw, with a 
"slip" frequency Af = fR- fw varying with ion temperature as A/ oc T1/2. Here 
the rotation frequency fR can be approximated by fR ~ fE when the diamagnetic 
and centrifugal drift terms are small. The rotating wall technique has also been 
applied to spheroidal ion plasmas in the strongly correlated or crystalline regimes 
[2]; here, the applied perturbation was axially uniform along the plasma (kz = 0), 
and the plasma rotation was generally observed to be phase-locked to the rotating 
field (i.e. A/ = 0). 

Previously, modest density and angular momentum changes of electron columns 
were reported [6] when an applied dipolar perturbation excited a plasma mode; 
but strong plasma heating limited the technique at low magnetic fields. Other 
experiments [7] utilize this heating to replenish the electron plasma by ionization. 

In this paper, we describe electron plasmas and magnesium ion plasmas confined 
by rotating dipole (me = 1) and quadrupole (mg = 2) electric fields applied at one 
end of the plasma column. We show that the rotating wall fields apply a torque 
which can be used to compress or expand the plasma, and the torque is shown 
to arise from Trivelpiece-Gould plasma modes. The rotating wall fields also cause 
plasma heating: for electron plasmas the cyclotron radiation cooling at B — 4T 
keeps the plasma temperature low; for ion plasmas, collisions with neutral gas or 
laser cooling keeps the ion temperature low. 

APPARATUS 

Figure 1 shows the "IV" Penning-Malmberg trap consisting of cylindrical elec- 
trodes in ultra-high vacuum (PRJ3X 10-9 Torr, 97% H2), in a uniform axial 
magnetic field (B — AT). This apparatus can contain Mg+ ions continuously diag- 
nosed by laser-induced fluorescence [8], or contain only electrons and operate in a 
standard inject/hold/dump-and-measure cycle [9]. 

Electron injection from a thoriated tungsten filament gives JVtot «3x 109 elec- 
trons in a column of length Lp ss 35 cm and radius Rp « 0.27 cm, with central 
density n0 « 4 x 108 cm-3. The electron plasma density profile n(r) and an es- 
timate of the thermal energy T are obtained by dumping the plasma axially and 
measuring the charge passing through a hole in a (rotatable) collimator plate [10]. 
Both measurements require shot-to-shot reproducibility of the injected plasma, and 
we typically obtain variability Sn/n < 1%. 

For ion experiments, a metal vacuum vapor arc (MEVVA) source is used to create 
Ntot ~ 5 x 108 ions in a typical column length L„ ~ 14 cm and radius Rp ~ 0.5 cm 
with a central density n0 ~ 5 x 107 cm-3. The ion plasma is diagnosed by a CW 
laser (~ 280 nm) scanning through a 32S1/2 ->• 32P3/2 cyclic transition of Mg+ at 
each radial position. The Doppler-broadened and -shifted laser induced fluorescence 
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Collimator Plate 

Faraday Cup 

Figure 1. Schematic diagram of the cylindrical trap, with inset representing the 
rotating wall drive on sectored cylinder S8. 

signal gives the ion velocity distribution f(v). From the measured ion distribution 
f(v,r,t), we obtain the local magnesium density n(r) and temperature T(r). 

Figure 2 shows the radial electron density profile (I) for the initial plasma 5 
sec after injection, and profiles after plasma expansion (E) or compression (C) as 
described below. 

RESULTS 

The rotating wall drive consists of sinusoidal voltages $wj = Aw cos(m9^-27r/si) 
applied to the eight sectors at 6j = 2irj/&. Here, fs is the signal generator frequency, 
and the wall perturbation effectively rotates at fw = fs/mg. 

In practice, inherent "background" asymmetries in the magnetic or electric 
confinement fields [11] exert a weak drag on the rotating plasma, causing a de- 
crease in angular momentum and a bulk expansion of the plasma. For elec- 
trons, measurements show that this "mobility" expansion rate scales roughly as 
^-i = -(n0/"o)bkg ~ (6 x 10~4 sec_1)(n0/108 cm-3)2 for the electron columns 
described here (Lp - 35 cm, B - 4T). To maintain or compress the plasma, the 
rotating wall drive must supply a positive torque as large or larger than this drag; 
alternately, a reverse-rotating drive can substantially increase the background ex- 
pansion rate. 

We find that the applied drive couples to the plasma through discrete kz ^ 0 
Trivelpiece-Gould (T-G) plasma mode resonances [12].  Figure 3 shows the mea- 
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Figure 2.   Electron radial density profile for injected plasma (/), a compressed 
plasma (C), and an expanded plasma (E). 

sured peaks in the compression rate versus drive frequency when a strong drive of 
amplitude Aw = 0.4V is applied to the injected plasma profile. Here, an mg = 1 
rotating drive at a chosen frequency is applied to the sectored electrode S8 for 5 
sec, and the initial compression (or expansion) rate n0/n0 is measured. The mea- 
sured background expansion rate of (h0/n0)hk& = -4 x 10"3 sec-1 (somewhat less 
than expected from the n2 scaling) has been subtracted from the data, so the plot 
indicates torque from the rotating drive alone. Two strong compression peaks and 
one broader compression region are observed; and two negative torque peaks are 
clearly visible in the reverse drive direction. Figure 3 also shows the rate of temper- 
ature change T, suggesting that the drive causes general heating as well as heating 
directly associated with T-G mode resonances. These temperature changes shift 
and broaden the T-G modes, making precise comparison with theory difficult. 

For comparison to linear mode theory, we apply a weak mg — 1 rotating wall, with 
Aw — 0.025V. The resulting compression peaks are shown in Fig. 4. This small am- 
plitude drive does not measurably heat the plasma, so the temperature remains low, 
with TKO.1- 0.2 eV. We observe many narrow T-G compression peaks, and these 
correspond closely with observed mode transmission peaks, i.e. 10-30dB enhance- 
ment in the wave signal received at S4. The observed mode transmission peaks, 
launched with S8 and detected with S4, correspond closely with numerical drift- 
kinetic predictions for T-G plasma modes varying as h(r, mr) exp(img9+imz zir/Lp) 
where h(r,mr) represents the radial eigenfunction with mr zeros (counting the one 
at r = 0). The six observed wave transmission and plasma compression peaks 
agree quantitatively with the (m2, mr) mode frequencies calculated numerically us- 
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fs   [MHz] 
Figure 3. Electron density compression rate n0/n0 for a strong ms = 1 drive. The 
compression peaks are associated with shifted (mz, mT) modes. The open diamonds 
represent the associated heating rate T. 

ing two "fit" parameters of iVtot = 2.7 x 109 and T = O.leV. These parameters 
are consistent with the measured JVtot = (3 ± 0.6) x 109 and T = 0.1 - 0.2eV. 
This correspondence has been further verified by varying the plasma length and by 
tailoring the antenna configuration to distinguish even and odd mz. 

The T-G modes for long columns within a cylindrical wall are predicted to have a 
rotationally-shifted "acoustic" dispersion relation, with frequency / given approx- 
imately by 

f - mgfR «   -^ Rp -r—g{mT,T) . 
Z1T h„ 

(1) 

The left hand side of Eq. (1) represents the frequency of the mode in the plasma 
rotating frame JR, which can be approximated by /« s=s fB when the diamagnetic 
and centrifugal drift terms are small. The shifted frequencies are proportional to 
Nljj2 through up = [Anne2/m]112 and Rp, are proportional to kz = irmz/Lp, and 
depend functionally on T and mT. In contrast, the radial density profile n(r) and 
absolute column size Rp have little effect on the mode frequencies except through 

The magnesium ion analog of Fig. 4 showing compression peaks corresponding 
to T-G modes can be found in Ref. [13]. Also, Figure 4 of Ref. [5] shows ion 
compression with a strong drive; here, the peak due to T-G modes is so broad that 
only one bump can be seen for f$ > fR. This broadening due to large amplitude 
and heating effects hindered the identification of T-G mode coupling in the original 
data. 
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Figure 4. Electron density compression rate for a weak me = 1 drive, compared 
to the observed and calculated Trivelpiece-Gould (T-G) plasma mode frequencies 
for various (mz,mr). 

The rotating wall technique enables practical plasma manipulation; for example, 
Fig. 5 demonstrates plasma compression (solid dots) by slowly ramping the drive 
frequency from 0.5 to 2.13 MHz in 1000 seconds. From 0.5 MHz to 0.65 MHz, 
the central density slowly decreases, indicating that there is no significant torque 
from the rotating wall drive and that no torque-balanced equilibrium is reached. 
From 0.65 MHz to 1.95 MHz, the torque provided by the rotating wall coupling 
through the (1,2) mode exactly balances the background drags, and the plasma is 
in equilibrium with the drive. Above 1.95 MHz, the background drags are larger 
than the rotating wall torque, and the plasma expands rapidly before reaching a 
new equilibrium with torque coupled through the (2,2) mode. 

One should emphasize that quadrupole rotating perturbation (mg — 2) works as 
well, and that a central density compression of a factor of 20 has been reported [1]. 
It is also apparent that mB — 2 tends to heat electron plasmas less than mo — 1, 
perhaps because fw — fs/m,0 is smaller. 

The nonlinear nature of the coupling to the (1,1) mode is shown in Fig. 6. The 
measured compression rate (dots) scales as h0/n0 oc Al

w
x for the experimentally 

accessible range of Aw > 0.025V. To understand this result, we measured the 
amplitude ATec of the received signal in a transmission experiment, and obtained 
scalings of Aiec oc A]^ for Aw < 0.02V and Arec oc A°w for Aw > 0.03V. 

Simple perturbation theory suggests that the compression should scale as 
(n0/n0) a 6n ■ 6ip ■ cos(</>), where 5n is the plasma density perturbation (with 
On oc A-ec), Sip is the applied potential perturbation (with 8ip a ^4^,), and <j> is the 
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Figure 5. Electron central density n0 and temperature T during a ramped me = 1 
drive. 

phase shift between Sn and Sip (with measurements showing <f> w const). Since the 
density perturbation Sn is observed to be saturated for Aw > 0.03V, the observation 
that h0/n0 oc Al

w is consistent with this theory perspective. 

A summary of the ion and electron density compression obtained by slowly ramp- 
ing the frequency of the rotating wall is shown in Fig. 7. The ions reach a density 
n0 ~ O.lnßi; note that with shorter plasmas, densities up to no = 0.23 n^ were 
obtained [5]. The slip in the ion case is a lot smaller than in the electron case. 
This is expected, since Eq. (1) suggests that the slip is proportional to the plasma 
frequency, and wpe — 210 wpMg+- The ion temperature exhibits peaks that we 
identify asm» = 0 T-G mode due to a weak (undesired) me = 0 component of the 
rotating wall drive. For the electrons, no similar peaks were observed because the 
first me — 0 T-G mode is above 2 MHz. 

We have interpreted the rotating wall coupling as a collective effect, in contrast 
with "side band cooling" which is interpreted as a single particle effect, i.e. the 
energy of a single particle transferred from the magnetron motion into damped 
axial or cyclotron motion. 

A rotating wall technique has also been applied to spheroidal ion crystals [2] 
using an axially uniform rotating electric field. Here, the torque is applied to a 
solid object, and in this "rotating brick" case, the crystal rotation was generally 
observed to be phase locked with the rotating field [2]. For an electron plasma, 
finite slip is required to apply a torque on the fluid; the T-G modes rotate faster 
(or slower) than the plasma, and the angular momentum carried by the wave is 
transferred to the particles. However, further experiments will be needed to clarify 
the distinction between the finite-slip kz ^ 0 couplings described here and the zero 
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Figure 6. Peak density compression rate n0/n0 and amplitude ATec of the received 
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slip kz = 0 coupling obtained with spheroidal coulomb ion crystals. Further, the 
wave-particle interaction which generates the torque is not understood theoretically: 
if the interaction is essentially Landau damping, the measurements imply that this 
damping is not in the linear regime. Further experiments may clarify this issue. 
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Nonneutral Plasmas* 

Roy W. Gould 

California Institute of Technology, Pasadena, CA 91125 

Abstract. Angular momentum and energy are added (or removed) when exciting a mode, such 
as a diocotron, Trivelpiece-Gould, or Dubin mode, and we discuss rates at which mode angular 
momentum and energy are added by applied fields. Excitation of a plasma mode is an effective 
way to transfer angular momentum and energy to the plasma because it is a resonant process. 
We relate this to recent experiments on compression and expansion of plasmas using a "rotating 
wall" field. We also calculate the torque on a Coulomb crystal which is phase-locked to a 
"rotating wall" field and describe phase oscillations and the maximum rate of acceleration which 
can be achieved. 

Early experiment^ 1) showed that asymmetric applied potentials can cause particle 
transport in nonneutral plasmas, and static field errors are thought to be responsible for 
the anomalous loss of particles from traps. Collective modes, either time dependent or 
static, can enhance the asymmetric fields responsible for this transport, and either 
inward or outward transport can occur. Recent "rotating-wall" field experiments(2) 
have brought some of these ideas into sharper focus by showing that nonneutral 
plasmas can be contained indefinitely with such fields and that the angular momentum 
transfer rates are much larger when the excitation frequency corresponds to one of the 
Trivelpiece-Gould(TG) mode frequencies. 

Theoretical attempts to understand transport have generally focussed on the details 
of particle transport near resonant surfaces in the plasma(3). In this paper, we focus 
instead on the angular momentum and energy added when a mode is excited. The 
added angular momentum and energy is associated with a coherent wave perturbation 
in the plasma. If the mode damps, the added wave angular momentum and energy then 
become part of the equilibrium plasma. Dissipative processes are required for damping 
and the details of these processes are important in determining exactly where the 
momentum and energy is deposited within the plasma. However, it is useful to 
separate the process of transferring angular momentum to the wave from its 
redistribution within the plasma and to obtain transfer rates from properties of the 
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modes. It is not actually necessary for the applied field to be a "rotating-wall" field, so 
long as the mode excited has a rotating field. We obtain the transfer rates from a 
susceptiblity, x» which is the ratio of oscillating charge induced on the wall to the 
oscillating applied potential which excites the mode. 

A spatially uniform cold electron plasma has a canonical angular momentum 
Pg = Nm(ur - wc/2) < r2 > , where N is the total number of electrons of mass m, 
ujr is the rotation frequency, independent of r for a spatially uniform plasma, and 
wc = eBo/m is the electron cyclotron frequency and < r2 > is the mean square radius 
of the plasma fluid. The first term represents the mechanical part of the canonical 
angular momentum and the second term represents the magnetic part. For plasmas 
obeying the drift approximation (wr < wc/2), the latter term is larger than the former, 
so that the canonical angular momentum is actually negative. Thus a positive torque, 
which increases the canonical angular momentum, decreases the magnitude of the 
angular momentum and therefore < r2 > , thereby compressing the plasma. 
However, when wr > u)cl2, Pe > 0 and a positive torque expands the plasma. While 
we discuss an electron plasma here, these ideas and results are applicable to ion 
plasmas with appropriate changes in sign of various quantities. 

We can calculate the torque Ton the plasma either by integrating the moment of the 
electric force over the volume V of the plasma, or by integrating the stress tensor over 
a surface S (the negative of the torque on the wall charges) outside the plasma at the 
wall. We can also calculate P, the power input to the plasma, from the wall potential 
times the inward displacement current at the wall: 

T = - JvrneEedV = e0JsETEebdS = iRe\imErmk<l>*mk]S 

P = - e0 Js f^ dS = lRe[ÜjErmk<l>*mk}S. 

where S = 2irbL is cylindrical surface at r = b, the wall and length L, so that 
k — kn = nn/L (periodic boundary conditions). The wave torque involves quadratic 
wave quantities, such as the field Ee times the perturbed ET of the wave, 
~ exp[i(m9 + kz - ut). <j>mk and £rmfcare the complex amplitudes of the oscillating 

wave potential and radial electric fields at the wall, respectively. Such fields travel 
with angular velocity w/m. We regard <j>mk as applied and Ermk as the response and 
define the response function, or susceptiblity, for a single wave with wave number pair 
(m, k) as 

Xmfc(w) =   -   T-^\r=b 

This allows us to write the torque and power input in terms of the applied potential as 
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T= - |fie[imxmfc(w)0mfc^Jt]S 
P = - \Re[iwxmk{u>)<f>mk<j>*mk]S. 

It follows from these relations that P/T = u/m, the angular velocity of the rotating 
field. Both P and T are quadratic in the applied potential. 

We anticipate that xmfc(w) wil1 have poles at the mode frequencies, with one pole 
for each radial eigenmode (whose number is denoted by /), and to be of the form, 

Xmfc(w) = E {ul  ,,
fl'"?,w    -, + 0ther terms 

vimk, Rimk> and limk WQ me frequency, residue or coupling strength, and damping rate 
of the mode with radial, azimuthal, and axial mode numbers (l,m,k). These are 
measurable quantities. If we focus on just one mode, hence one term in this series, this 
is the classic case of an oscillator driven by a sine wave. For a dissipationless plasma, 
limk = °> and die susceptibility function will be purely real, with poles at the mode 
frequencies. Then there is continuous increase, or decrease, of angular momentum and 
energy of the mode only if the applied frequency is exactly equal to a mode frequency. 
With damping, the steady input rate at resonance is proportional to Rlmkhlmk. 

The sign of Rlmk determines the direction of the transfer. When Rlmk is negative, 
transfer is to the plasma, and when Rlmk is positive, transfer is from the plasma. When 
limk - ° and at exact resonance, the oscillator is continuously excited until the pulse 
ends. Off resonance, there is transfer to and from the mode at the difference frequency 
with a net transfer to the plasma if Ä/mfc < 0 and from the plasma if Rlmk > 0. For an 
applied pulse whose length is short compared to the beat period there will be a 
momentum transfer to or from the plasma, depending on the sign of Rlmk, so long as 
the pulse has frequency components at one of the mode frequencies. 

We note that the input admittance of a patch electrode can be written in the form 

Y(u)= -ia;E|5mn|
2
XmnM, 

run 

where Smn is a "structure" factor for the patch with k = nn/L. This includes all of the 
modes and is a measureable quantity. In this connection we again note it is not 
necessary for the applied field to be rotating in order to excite a mode which rotates. 

To obtain xmfc(u>) one must solve the potential equation within the plasma and 
surrounding vacuum regions for a sinusoidally varying potential applied to the wall 
electrode. xmfe(w) is simply the negative of the logarthmic derivative of $ at the wall. 
For this discussion, we consider a cold uniform plasma cylinder of radius a. The 
potential equation is V • e ■ V$ = 0, where e = e(u) is the linear dielectric tensor for 

172 



sinusoidally varying fields. The methods for solving this equation when $ = Oat the 
wall (r — b), and the for modes which result, have been discussed extensively in the 
literature(4,5). This model has ilmk = 0. It is straightforward to obtain the solution 
when there is an applied time-varying potential applied on the wall, and to obtain 

Xmfc(^) 
r F(u)+Gi 
U3F(u)+G2 

TarJm(Ta)- 
m [Jm(Ta) ■ 

kb Jm(<sc)iC(fca)--Km(fcc)4,(fca) 
™ Km{kc)Im(ka)-Im{kc)Km(ka) ' 

kb fm(kc)K'm (ka)-KUkc)fm{ka.) 
m K,

m(kc)Im{ka)-fm(kc)Km(ka) ' 
,    K'm(kc)Im.(ka)~fm(kc)Km(ka) 
KC Km(kc)Im(ka)-Im(kc)Km(ka)' 

with T2 = - fc2e3(u;)/e1(w). Primes denote derivatives with respect to the argument. 
F(tü) contains all of the frequency dependent terms and properties of the plasma and 
G1, G2 and G3 depend only on the wave numbers m and k and the dimensions a and 
b. The components of the dielectric tensor are given in Ref. 5. The poles of Xkmi^) 
give the mode frequencies and are obtained from the solution of F(ui) + G2-0. F(w), 
and thusXfcmM' ^as alternating poles and zeros for real frequencies because of the 
Bessel functions. They are clustered about about u = mu>r for small ka, becoming 
very dense at this frequency. Since m and k = rnra/L are fixed, these various poles 
correspond to higher order radial modes, with increasing number of radial nodes, 
characterized by radial mode number I. There is also one isolated mode, the diocotron 
mode with u) = ojr[l - (a/b)2m] for ka = 0. Coupling to the latter is quite large. 

It is straightforward to obtain the frequencies and residues for each of these poles 
numerically. Illustrative results are shown in Figures la and lb, respectively. Both are 
in units of ov, the rotation frequency. Only the lowest few T-G modes and the one 

Co 

CO, 

FIGURE la. Mode Frequencies in units of wr versus ka for m = 2, b/a = 2, wp/ur = 10. 
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FIGURE lb. Residues in units of ur versus ka for m = 2, b/a = 2, u>p/u>r = 10. 

diocotron mode are shown. Higher modes have frequencies closer to mwr and even 
smaller residues. These fall in the shaded regions of the figures. Fast modes, those 
whose fields rotate faster than plasma rotation {u/m > cur) have negative residues, 
while slow modes (co/m < ur) have positive residues. Thus the excitation of a fast 
mode adds angular momentum so that a fast wave has positive angular momentum. 
Similarly, the excitation of a slow mode removes angular momentum so that a slow 
wave has negative angular momentum. 

For   b«l, the   dispersion   relation   of  the   Z'th   radial   TG   eigenmode   is 
wlmn ~ mujr ± ka (u)p/pml), where pml is the l-thxoot of Jm(x) — 0.    Similarly, 

3 
R, ■kmn c. Jm1 . (ka)6 

A similar expression has been obtained for the susceptiblity of spheroidal plasmas, 
using the methods of Ref. 5. LeGendere functions replace the Bessel functions. 

It has recently been shown the rotation of a Coulomb crystal can be phase-locked to 
a rotating wall field(6) and that this is a very useful technique. Here we calculate the 
torque on an ideal Coulomb crystal. The effective potential of the applied trap field is 
static in a frame rotating with the field and has the following form 

$T = K,[22 + /3p2] + ^ PZWd) P™(0) cos(m<f>). 

where V0 = muj2
z/2e, with uz the single particle axial bounce frequency of the trap and 

Vj the amplitude of the rotating multipole potential at the crystal boundary, £, = 6, 
£2 = 0. In equilibrium, the crystal adjusts its so as to produce a potential $p which just 
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cancels $T inside the crystal. This gives a spheroid(6), of radius a and half-length b, 
with a slight deformation of its surface arising from the second term. The deformation 
can be characterized by its surface charge, 

• = n0ea6 Mg& ^Mcos[m(^> + A0)], 

where 6 is the fractional distortion in the radius a, hi is the element of the metric 
tensor associated with £t. In equilibrium, A<^> = 0, and the torque on this surface 
charge vanishes. However, if this charge distribution is rotated (ahead) through an 
angle A<j> from the equilibrium position without significant change in shape, then the 
torque T = Jv pE^dq  is non-zero and is 

T = CmQ0Vi<5 sm(mA0) = - Tmax sin(mA<t>) 

where Q0 is the total charge of the crystal, and c™ = (3m/4) /+1 [P™(0/P„ (0)]2d£ 
= 8/5 for m = 2. Vj is proportional to 6 so that the torque is quadratic in 6. This 

torque acts to speed or slow the rotation, according to the sign of m A</> and keep the 
crystal rotating, on the average, with the applied field. However there may be small 
amplitude phase oscillations and there is a maximum torque Tmax which governs the 
maximum rate at which the crystal rotation can be accelerated. Both also depend on the 
moment of inertia of the crystal, and phase oscillations are probably damped by 
viscous effects: Phase oscillations might be excited by an abrupt change in phase of the 
rotating field, and a study of the response of the system may yield useful properties of 
the crystal, since the time required to come into a new equilibrium shape is not known. 
Again, it should not be necessary for the applied field to be a "rotating wall" because 
the rotating crystal will respond mainly to the rotating component of a standing wave 
field whose angular velocity is close to that of the crystal. 
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Abstract. 
The autoresonant (nonlinear phase locking) manipulation of the diocotron mode 

in a non-neutral plasma is investigated. Autoresonance is a very general phenomena 
in driven nonlinear oscillator and wave systems. By sweeping or chirping the drive 
frequency, autoresonance allows the amplitude of a nonlinear wave to be controlled 
without the use of feedback. The experimental results, including a novel scaling rela- 
tion, are in excellent agreement with a simple theoretical model. 

The oscillation frequency of a nonlinear, Duffing-like oscillator changes with am- 
plitude. If you excite such an oscillator by driving it at its linear resonant frequency, 
the oscillator's amplitude will grow only marginally before its shifting frequency 
causes it to go out of phase with its drive, after which the oscillator's amplitude 
will beat back down to zero. By measuring the oscillator's instantaneous frequency 
and phase, you could use feedback to grow the oscillator's amplitude arbitrarily. 
But how can you grow the oscillator to high amplitude without feedback? A general 
property of weakly-driven, nonlinear oscillators is that, under certain conditions, 
they automatically stay in resonance with their drives even if the parameters of the 
system vary in time and/or space. This phenomenon is called autoresonance. 

The autoresonance concept dates back to McMillan [1] and Veksler [2], and was 
further developed by Böhm and Foldy [3] for particle accelerators. The term "phase 
stability principle" was used to describe the phenomenon in these early studies. 
The synchrotron, synchrocyclotron [4], and other, later acceleration schemes [5,6] 
all are based on autoresonance. Recently, the effect has been studied theoretically 
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in atomic and molecular physics [7,8], nonlinear dynamics [9,10], nonlinear waves 
[11] and fluid dynamics [12]. 

Autoresonance also occurs for waves and modes. One system which can exhibit 
autoresonance is the £= 1 dioctotron mode, for which the mode frequency increases 
with mode amplitude. If the mode is driven by a sufficiently large drive is applied to 
an azimuthal sector, and if the drive frequency is chirped through the linear mode 
frequency, the mode will be excited until it crashes into the trap wall [13] (see 
Fig. 1) Once autoresonantly excited, chirping downwards will decrease the mode 
amplitude. Autoresonance can also occur when the mode is driven by a single 
frequency and the linear frequency of the mode decreases slowly due to plasma 
expansion (see Fig. 2). 

>.00        0.01        0.02        0.03        0.04        0.05 
Time (s) 

FIGURE 1. Autoresonant response to a swept drive, (a) Mode amplitude (b) Drive frequency 
(solid line), measured linear resonant frequency (dashed line), and measured excitation frequencies 
(•). The driving frequency is swept from 20kHz (well below the linear resonant frequency) to 
45 kHz (well above the linear resonant frequency) in 0.067 s and the drive amplitude is 0.5Vp-p. 
At first, the mode amplitude is small, and has frequency components at both the drive frequency 
and the linear diocotron mode frequency. After the drive frequency passes the linear resonant 
frequency, the amplitude grows autoresonantly, and only one frequency is present. Finally, the 
amplitude grows large enough to send the plasma into the wall, and the mode frequency drops 
precipitously. 

Autoresonance will not occur when the drive frequency or system parameters 
are changed too quickly or when the drive amplitude is too small. For a fixed 
chirp rate A (the change in the drive frequency per second), there is a critical drive 
amplitude V& below which the maximum mode amplitude is relatively small and 
increases with the drive amplitude, and above which the mode amplitude follows 
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FIGURE 2. Response to a constant frequency drive. Autoresonance occurs because the system's 
linear resonant frequency drops as the plasma expands, (a) Mode amplitude (b) Drive frequency 
(solid line), measured linear resonant frequency (dashed line), and measured excitation frequencies 
(•). The drive frequency is 27.4 kHz and the drive amplitude is 0.04 Vp-p. The initial linear 
diocotron frequency is 28.4 kHz, but plasma expansion causes the linear diocotron frequency to 
drop [14] by about 14% in 0.5 seconds. (The background residual gas pressure was deliberately 
set high to increase the expansion rate.) Autoresonant growth occurs only after the linear mode 
frequency has dropped to the drive frequency, at t = 0.11 s. 

the drive frequency to high amplitude and is independent of the drive amplitude. 
As shown in Fig. 3, the threshold is very sharp. Lower chirp rates have lower critical 
drive amplitudes. Theoretically, 

Va oc A075, (1) 

and is in excellent agreement with the data, as shown in Fig. 4. 
The threshold exists because the autoresonantly driven mode can be modeled as a 

pseudoparticle oscillating in a slowly-varying pseudopotential. The slowly-varying 
Hamiltonian is: 

#(<l,A) = SA2/2 + Vpseudo(i>), 

where the pseudopotential is 

VPseudo($) = -2e/0
1/2cos4>+^<i>, 

and the slowly-varying inverse mass is 

(2) 

(3) 
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Drive Amplitude (Vp-p) 

FIGURE 3. Autoresonant response near threshold, (a) Mode amplitude D/Rw as a function of 
time for drive amplitudes of 0.100, 0.190, 0.195, and 0.300 Vp-p. Note that the response to the 
0.195 and 0.300 Vp-p drives is essentially identical, (b) Maximum mode amplitude as a function 
of drive amplitude. Near the drive threshold voltage 0.193 Vp-p, the response is bimodal; some 
shots stay low, while other shots go to high amplitude, (c) The fraction of shots near threshold 
that go to high amplitude. All data are taken at a chirp rate of A = 2 x 105 Hz/s. 

S = Wo + 
21, 

■3/2' (4) 

The potential, Vpseudo, looks like a tilted series of potential wells. Here $ is the 
phase of the pseudoparticle in the pseudopotential, A is the oscillation amplitude, 
e is the drive strength, a is the chirp rate, and Jo is the instanteous action. 

Autoresonance will occur so long as the variations are slow and the pseudopo- 
tential has wells. The depth of the wells depends on the chirp rate and the drive 
amplitude, but also exhibits a minimum at an intermediate, but small value of the 
action. This minimum can be observed experimentally as a minimum in the fre- 
quency of oscillations of the action (see Fig. 5). If the chirp is too fast or the drive 
too small, the wells will disappear altogether, leading to the threshold condition 

e> 
37 (5) 
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FIGURE 4.   Critical amplitude Va vs. chirp rate A .   Measured results (•), and theoretical 
prediction from Eq. (1) (solid line). The proportionality constant in Eq. (1) is fit to the data. 

2000 
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V? 
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FIGURE 5. Action vs. pseudoparticle oscillation frequency. The dots are measured experimen- 

tally, and the line plots /osc oc \lI0 S, where the position of the minimum and the frequency 
at the minimum are fit to the data. The drive amplitude was 0.15 Vp-p. The discrepancy be- 
tween the experiment and theory at large action is due to the supralinear terms in the nonlinear 
frequency, which are not included in the weakly-nonlinear theory. 

i.e. to Eq. 1. 
The experiments, theory and implications of this work is further described in two 
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publications, Ref. [13] and Ref. [15] 
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Experimental Observations of Nonlinear 
Effects in Waves in a Nonneutral Plasma 

Grant W. Hart, Ross L. Spencer and Bryan G. Peterson 

Department of Physics and Astronomy 
Brigham Young University 

Abstract. We have been making measurements of nonlinear effects that occur in 
the normal modes of electrostatic waves in a pure electron plasma. The two effects 
described here are (1) mode coupling between normal modes and (2) formation of 
solitons from the normal modes. The coupling between the modes in the plasma occurs 
because of the nonlinear terms in the continuity and momentum equations. We see the 
coupling between the n. = 1 and n, = 2 modes in our plasma, where nz is the number 
of half-wavelengths that fit into the plasma. These are the only two modes that have 
close enough frequency matching to couple significantly. The predicted amplitude and 
phase dependence of this coupling theory are verified in our data. 

When normal modes are grown to large amplitudes, they can become solitons bounc- 
ing between the ends of the system. We have measured these solitons and have shown 
that they have the expected properties of solitons: when not interacting, they travel 
faster than the linear wave speed in the plasma and they also show the phase delay 
expected when they interact with each other. Because of the interaction between the 
height of the soliton and its speed, solitons can only be grown from normal modes in 
a limited amplitude range. Mode coupling can come into play with these solitons and 
even cause one to disappear. 

INTRODUCTION 

We have been studying electrostatic Trivelpiece-Gould modes in a nonncutral 
plasma confined in a Malmberg-Penning trap [1]. Our plasma is 60 cm long and 
about 2 cm in radius. The plasma temperature is about 1 cV [2]. The waves that 
we have been studying have had large enough amplitudes that nonlinear effects 
become important. There are two main nonlinear effects that we have observed: 
(1) Coupling between different modes and (2) Solitons. 

MODE COUPLING 

The mode coupling we observe occurs between the lowest frequency standing 
waves.   Because of our long, thin geometry these are basically Trivelpiece-Gould 
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modes with close to an integral number of half-wavelengths in the plasma [3,4]. 
We identify these modes by their nz value, which can be defined as the number of 
half-wavelength in the plasma. The lowest frequency mode has 1/2 wavelength in 
the plasma, so it has an nz of 1. It has odd symmetry relative to the center of the 
plasma. The next higher mode has one full wavelength in the plasma, so it has an 
nz of 2. It has even symmetry relative to the center of the plasma. 

Physical Mechanism of mode coupling 

Product terms, such as V • (nv) in the continuity equation and v ■ Vv in the 
momentum equation can create a drive for other modes, because they involve the 
sum and difference frequencies. If the drive from these terms matches a mode's 
structure both spatially and temporally, then the driven mode can either grow or 
shrink, depending on the phase relationship between the mode and the drive. 

For example, if we have mostly the nz = 2 mode with just a little bit of the 
nz = 1 mode present, this can cause the nz = 1 mode to grow to large amplitude. 

Simple theory 

Assume modes of the form 

m — nw sin (u>it) sin (kiz) (1) 

n2 — n20s'm(uj2t + 41) cos (k2z) (2) 

the corresponding velocities are 

Vi = cos (uiit) cos [k\z) (3) 
n0 fci 

v2 = T~ cos(io2t + 4>)sm(k2z) (4) 
n0 k2 

We put these into the continuity equation and find the terms that have the same 
spatial and temporal dependence as the rii and n2 modes. The result is that 

dnw      ni0n20 , . 
^r = -2^WiCOS^ (5) 

%» =-1^008*. (6) 
at 2n0 

Note that if the phase is in the right range the first equation leads to initial 
exponential growth for the nz = 1 mode. If there is a small frequency mismatch 
between the two modes, we define SLO - u>2 - 2wi. We can model this by having a 
time dependent phase, <j> = cf>0 + 8wt in the above equations and it leads to alternate 
periods of growth and decay. 
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FIGURE 1. Mode conversion for 1 Volt drive. The upper plot shows the amplitude of the two 

modes as a function of time. The lower plot shows the relative phase between the two modes. 

Experimental Measurements 

We launch these modes by oscillating the confining potentials at the end of the 
plasma at the nz = 2 mode frequency. For these experiments we applied the same 
oscillating potential to both ends, matching the even symmetry of the mode. 

We observe the modes by measuring the image charge induced on the wall rings. 
The amount of charge induced on an azimuthally symmetric ring is close to the 
total charge under the ring, so what we measure is approximately 

i: n dz. (7) 

Note that if a mode has a node centered under a ring, then we are insensitive to 
that mode on that ring. 

We recorded our data on two rings centered at ±20 cm away from the center of 
the plasma, approximately 2/3 of the way from the center of the plasma to its end. 
The rings were 10 cm long. It should be noted that this configuration is insensitive 
to the nz = 3 mode because of the ring placement relative to the nodes of that 
mode. The signals for the nz=l and n-=2 modes can be separated by adding and 
subtracting these two signals because of the symmetry of the modes. We observe 
the image charge on these rings after the drive has stopped. 

Figure 1 shows the amplitude of the two modes as a function of time when the 
driving voltage is one volt. Note that the amplitude of the n~=\ mode grows and the 
nz—2 mode goes to a smaller (but nonzero) value. The phase approaches — |. When 
the phase is ±|, the mode conversion will stop because of the cos^> dependence in 
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FIGURE 2. Mode conversion for 2 Volt drive. The upper plot shows the amplitude of the two 

modes as a function of time. The lower plot shows the relative phase between the two modes. 

The shaded regions show the times when the nz = 1 mode is shrinking and the nz = 2 mode is 

growing. 

equations 5 and 6. All of our one-volt data shows the phase eventually going to 
one of these values. 

Figure 2 shows the amplitude of the two modes when the driving voltage is two 
volts. In this case we get conversion back and forth between the two modes as the 
relative phase varies due to the frequency mismatch. Equations 5 and 6 predict 
growth for the nz = 1 mode when cos 4> is in the range from —\ to f and damping 
when outside that range. The shaded areas on the lower curve in Figure 2 are 
the times when the phase should be outside of that range, based on the growth or 
damping of the modes. We can see that within the error bars this prediction is 

correct. 
In order go beyond the qualitative result shown above, we need to verify that the 

growth of the nz = 1 mode has the proper cos <f> dependence. The left hand plot 
of Figure 3 shows the growth rate of the nz = 1 mode with the n20 dependence 
divided out plotted versus cos <f>. This fits a linear curve very nicely, showing the 
predicted cos</> dependence. We can also take the same data and plot it versus 
the amplitude of the nz = 2 mode, since this should also be linear when the j> 
dependence is removed. The right hand plot of Figure 3 shows this plot, which is 
also linear. The slopes of these lines should depend only on n0 and wu but there 
appears to be some variation between shots of different drive amplitude that is not 
yet understood. 
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FIGURE 3. Phase and Amplitude dependence of mode growth. The figure on the left shows 

that ~//A is proportional to cos0. The figure on the right shows that -,/cosO is proportional to 
A. 

Energy transfer 

The small signal energy density of these modes can be shown to be 

u = CoEl ( 1 + -' 

The connection between Ez and the voltage that we measure on the rings can be 
obtained by recognizing that the voltage is proportional to the charge under the 
rings, as in Equation 7. n can be obtained by recognizing that in this geometry 
the radial part of V2 dominates in Poisson's equation. This makes the electric 
potential proportional to n, independent, of the frequency for low frequency modes. 
Therefore, Ez is proportional to j or nu. Since both modes are integrated over an 
integer number of half-wavelengths, the total mode energy can be written as 

/       u:2 

Energy oc n2uj2 \\ -\—%r 
\ UJ2 

Using this result to plot the energy transfered between the two modes in the two 
volt case shown above, we get Figure 4. We can see that the energy initially drops 
due to the damping of the nz — 2 mode. This levels out as energy gets stored in the 
n. — l mode, which has much less damping. When the system converts back to the 
nz = 2 mode, the energy again decays until the system ends up back in the nz — 1 
state. The wiggles in the energy curve at about 25 and 40 /isec might correspond 
to energy being coupled into and out of the nz = 3 mode. The frequency of the 
wiggles roughly corresponds to the frequency mismatch between these modes, but 
we are unable to measure the nz = 3 mode directly because of the placement of 
the measuring rings. 
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FIGURE 4. Energy in the two modes. The dotted curve is the energy in the nz = 1 mode, the 
dashed curve is the energy in the nz = 2 mode and the solid curve is the total energy in both 

modes. 

This simple model does not predict that the modes should end up in the final 
state that we see, with the phase near ±| and the nz = 1 mode large and the nz = 2 
mode small. To predict how the phase should behave, we need more information. 

A more complete model 

We need to include the momentum equation to find how the phase should evolve 
(equivalent to finding the nonlinear frequency shifts). We convert the set of equa- 
tions (one continuity and one momentum equation for each mode) to second order 
equations. From this we find a growth rate of 

7 = 
3\ n20 

47 2n0 

Uli cos <f> (8) 

for the nz = 1 mode, which is 3/4 of the rate given by Eq. 5 in the earlier model. 
When we numerically integrate these coupled equations, we find that phase lock- 

ing does not occur unless there is damping of the nz=2 mode. Without damping 
the modes just convert back and forth indefinitely. With damping, the phase locks 

near that given by 

tancp — 
25u 

72 
(9) 

where 72 is the damping rate of the nz—2 mode. Note that for a small 72 this will 
be near ±|, depending on the sign of 5u. 

The amplitudes obey the relationship that 

«20 
constant (10) 
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where the constant depends on — and —. 
This final state represents a slow decay a.s energy is slowly fed into the n,=2 

mode from the nz=\ mode. Since the amplitude of the nz=2 mode is small, the 
rate of energy loss is small and this state persists for a long time. Of course this 
model is also incomplete, as it is an infinite space model and ignores finite-length, 
image charge, and radial profile effects. It also ignores the damping of the n.=\ 
mode. It does, however, seem to capture the essential physics of what is going on 
in the experiment. 

GROWTH OF SOLITONS FROM NORMAL MODES 

A soliton is a wave in a dispersive medium that is large enough that nonlinear 
steepening effects just balance the dispersive spreading, causing it to propagate 
unchanged. Solitons occur in many physical situations [5]. 

The cold fluid equations for a plasma in a cylinder can be manipulated, mak- 
ing some assumptions, into the form of the first integral of the Korteweg-deVries 
equation [6]. This means that these solitons should have the properties of the well 
known solutions of that equation. 

The relevant properties of Korteweg-deVries (KdV) solitons are 

1. They tra.vel faster than the linear wave speed in the medium. 

2. Two solitons pass through each other basically unaffected, except that their 
exit times are delayed relative to what you would expect from their initial 
speeds and entry times. If we just observe their entry time and exit time we 
would say that their average velocity is less while interacting. 

3. The amplitude is linked to a specific speed and width. As the amplitude 
increases the speed also increases. As the amplitude increases the width de- 
creases. 

4. The soliton has the characteristic shape of sech2(.i/A) where A is the width 
of the soliton. 

Solitons can be created in two ways. One is to put a large potential step on a 
confining ring [7,8]. This requires a relatively large voltage (tens to hundreds of 
volts.) Another way is to create them from normal modes [6]. Essentially you are 
repeatedly hitting the pulses at the right time with a small voltage. This second 
method is the one used to make the solitons in this paper. 

The number of solitons created from a given normal mode is equal to nz and in 
numerical simulations they have the characteristic sech2 shape of KdV solitons [6]. 
Solitons can only be created in a small amplitude range with this method. For the 
soliton to to remain in phase with the drive, the average speed of the soliton must 
be equal to the linear wave speed. This requires a balance between the amplitude of 
the soliton (which affects its speed) and the nonlinear slowing during interactions. 
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FIGURE 5. Normal Modes and Solitons. The figure on the left shows waveforms on various 

wall rings when the nz = 2 mode is in its linear state. The figure on the right shows the waveforms 

when solitons are present in the system. 

When the soliton is not interacting, its speed is greater than the linear wave speed, 
and so the speed can average to the linear wave speed. 

Figure 5 shows the waveforms on different sections of the wall both with and 
without solitons. Without solitons, shown on the left, all the signals have different 
amplitudes, but the same time dependence. With solitons, as shown on the right, 
you can see the negative bump of the soliton moving under each ring in sequence. 
There are also other oscillations visible in this figure that we think are due to 
external resonances in our system. Assuming that the peaks in the figure occur 
when the peak of the soliton passes under the center of each ring and knowing 
where each ring is located allows us to compute the velocity of the soliton. The 
position as a function of time is shown in Figure 6. This shows that the speed is 
higher during the short time when the solitons are not interacting either with the 
ends or with each other. 

If we observe these solitons 20 microseconds later, as shown in Figure 7, we 
see that one of the solitons has disappeared. This disappearance of the soliton is 
somewhat reminiscent of the mode coupling - the equivalent of the nz=2 mode 
has disappeared and been replaced by the equivalent of the nz=\ mode. When we 
observe during the time of disappearance, as shown in figure 8, we find that one of 
the solitons decreases in amplitude and slows down until it is overtaken and appears 
to be absorbed by the other. The details of how this happens are still unclear. It 
is possible that a small amount of the linear type nz = 2 normal mode oscillation 
occurs underneath the solitons. If this mode converts to the nz = 1 mode, one side 
will be enhanced and the other decreased by that mode. This would cause one side 
to be smaller and move more slowly. This hypothesis has not yet been investigated 
in detail, however. 

The non-interacting velocity of the single soliton is too high for a cold fluid model 
of the soliton to explain, but is about what you would expect from a kinetic model 
[9]. The non-interacting velocity of the two solitons is somewhat higher than that 
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FIGURE 6. Position vs. Time for a soliton when two solitons are in the system. 
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FIGURE 7. One Soliton Signals. The figure on the left shows the waveforms on various wall 

rings after one of the solitons has disappeared. The cycle referred to on the x-axis label is now 

twice as long as it is in Figure 5. The figure on the right shows the position vs. time of the one 

soliton. 
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FIGURE 8.  Disappearance of One Soliton. One soliton becomes smaller and slower than the 
other. The arrows indicate the position of the soliton that will disappear. 

of the one soliton and cannot yet be fully explained. 

CONCLUSIONS 

The nonlinear effects of mode coupling, phase locking and soliton formation have 
all been experimentally observed and most of their properties are as predicted. 
Some points have not yet been reconciled, including the amplitude dependence of 
mode coupling, the fact that the free soliton velocity is too high when two solitons 
exist in the system and the details of how one of the solitons disappears. 
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Numerical Investigations of Solitons in a 
Long Nonneutral Plasma 

S. Neil Rasband and Ross L. Spencer 

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 

Abstract. For realistic density profiles we have obtained two-dimensional soliton 
solutions numerically for a cold-fluid (CF) model and as a BGK wave with finite 
temperature. The CF soliton profile agrees well with an earlier analytic approximation 
(K. C. Hansen, Master's Thesis, BYU, 1995), and for small temperatures(<0.1eV) the 
profiles for the CF soliton and the BGK soliton agree as well. The effects of temperature 
are evident in the propagation velocities and differences in the models are also evident 
for large amplitude solitons. 

INTRODUCTION 

Solitons in nonneutral plasmas have been studied using simulations by Neu and 
Morales [1] in slab geometry and by Hansen [2] in cylindrical geometry. Solitons 
have also been observed experimentally by Moody and Driscoll [3] and by Hart 
[4]. Solitons in nonneutral plasmas offer the potential for careful study of nonlinear 
waves and two-dimensional soliton type structures in a system where they live and 
interact for a substantial duration of time. 

SOLITONS IN THE COLD-FLUID MODEL 

The familiar equations for the fluid density n(x,<), velocity v(x, f), and electro- 
static potential </>(x, t) are: 

dn■     „   , 
W + V.(nv)=0, 

^J-E + XvxB, 
at      m        mc 

V2(f> = -Aixqn. 

We make the following assumptions: 
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d 
vr = 0, — = 0,     (no <f> dependence) 

V = rw0(r)</> + vzz,        B = B0z, 

where B0 denotes a constant magnetic field. We then simplify to find 

dn      d ,     . ,,. 

m + Tz^ = °' (1) 

% + *'7T = --!P (2) 

1 d    d<j>      d2<t> ,„, 
—£- (r-z- ) + — = -4Trqn. (3) 
r or    or        ozl 

We now transfer focus to the moving frame of the soliton. Assume the soliton is 
moving to the right with a velocity u and let ( denote the coordinate in the moving 
frame along the direction of the magnetic field. Then 

(,—z — ut,    vz = vi + u,    n(r,z,t) = n(r,((z,t)),    similarly for v( and </>. 

Equation (1) becomes 

—(nv() = 0 =$■ nv£ = const (in (). 

We assume the boundary conditions that vz = 0 when z (or £) —>■ 00 and that also 
that n(r,() -» "o(r) and <£(ri 0 "^ <M?"). Thus 

n{r, Ovc(r, () = -un0{r). (4) 

Equation (2) becomes 

d A   2  ,   « 
äC(2^ £u»c + -# = °> 

=*      ^c
a(r,C) + ^(r,C) = ^a + ^(r). (5) 

We now solve for v^ and n(r, () to find 

vc(r,C) = -ti(l-2^(r,C))»    and (6) 

n(r,C) = no(r)/(l-2^(r,C))', (7) 

where V>(r, () = <l{4>{ri 0 — 4>o{r))/mu2. From Poisson's Equation (3) we then find 

V2<Mr, C) = ^P- [l - (1 - 2^(r, C))-"] (8) 
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Approximate analytic solution to Eq. (8) 

Following Hansen [2], assume |i/>| C 1 so that 1/y 1 - 2^> ~ 1 + «/> + |t/>2. Sub- 
stituting in Equation (8) find: 

V^ = -^4% + U2)- (9) 

Let tp(r,Q — R(r)f((), where we assume a knowledge of R(r); with boundary 
conditions R(0) = 1 and #(rwan) = 0. Substitute into Equation (9), multiply 
through by rR(r) and then integrate from 0 to rwa\\. We obtain the following 
equation: 

g.^.öfiü,,»^, (10) at, ul I    uL 

where a, ß2, and if are defined below. Let ||sr||2 = /0
rwa" rg2 dr. Then 

P \\RWh       dr[dr)K Mlfiir' {    ' 11*11 
= ^2(0)||ü||2 Jo 

2- wwr^rR2dr>       ™ 
°=^i^r^r)rR3dr-       (i3) 

Equation (10) we recognize as the first integral of the KdV equation and is readily 
verified to have the soliton solution: 

/(C) = Asech2(|-),    where (14) 

*-^®W-^ (15) 

Numerical solution to Eq.  (8) 

We assume a tensor product spline approximation for 0(r, £) = Yli,j V'iMV'jCO 
and take a Galerkin approximation to Eq. (8). We assume symmetry about £ = 0 
and r = 0 and thus require di>/d((r, 0) = 0 and 9«/'/9r(0, () = 0. Furthermore 
we take V>(rwan, £) = 0 and ^>(r, (wail) = 0, where Cwan is arbitrary but taken large 
enough to approximate oo. The unperturbed radial density profile is taken to be 
of the form 
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n0{r) = n00exp [-(—)"]. 
rP 

Due to the nonlinear nature of Eq.   (8), the numerical solution is obtained via 
Picard iteration. Let superscripts denote the iteration index, then symbolically, 

^(n+1)(r,C) = (V2)-1/(^(n)) 

where (V2)-1 represents the inverse of the matrix operator obtained in the Galerkin 
procedure to represent the Laplacian and /($'"') represents the right hand side of 
Eq. (8). An efficient algorithm is devised that converges rapidly without underre- 
laxation: compute ^("+1)(r, ^), then adjust u according to 

u(n+l) = u(n)   I I ^^(n+l) daj   /(^(n))2 da, 

The amplitude $(0,0) is fixed, 0 < $(0,0) < 0.5, and thus after finding u<n+1)_the 
coefficients are adjusted to satisfy this constraint which then give us a new f"l 
Then cycle again until convergence is achieved. 

As an example we choose rwaJ] = 4.0cm and Call = 30.0cm. For the density 
profile we choose rp - 2.0cm, \i = 4.5, and n00 = 4.0 X 106cm ~3. We choose 
$(0,0) = 0.4 and then find the numerical solution to Eq. (8). Figure 1 shows the 
two-dimensional soliton function ip(r,() for ( > 0. 

soliton equilibrim function +(r,£) 
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FIGURE 1. Potential soliton for < > 0 

Figure 2 compares the numerical solution to Eq. (8) to the approximate analytic 
solution as given in Eqs. (14)-(16) for r = 0. 

Using Eqs. (11)-(13) with the function R(r) replaced by $(r, () and then choosing 
an average over (, we estimate a = 0.52, ß2 = 0.41, and rf = 0.68 for the soliton 
computed above. With these values Eq. (15) gives u/(rpoje(0)) = 0.74 whereas the 
numerical solution has u/(rpu>e(0)) — 0.80. 
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FIGURE 2. Comparison of numerical (solid), Eq. (8), and analytic(dashed), Eq. (14), solitons 

for C > 0 

BGK WAVE SOLITON 

To find the appropriate nonlinear BGK wave we need the distribution function 
f(r,(iv) where 

/oo 

f(r,C,v) 
-oo 

dv. 

We obtain this distribution function by assuming that far away from the soliton, 
£ —>■ oo, the distribution function should be a Boltzmann distribution centered 
about — u, f ~ exp[—    2J2    ], where vr is the thermal velocity given by JkT/m 

and t>oo(i>,C) is defined below. In other words, we inject a Boltzmann distribution 
toward the soliton from the right. This distribution function we get everywhere by 
noting that the distribution function is preserved along particle orbits and using 
conservation of energy, |mv2 + q</>(r, £) = ^mv^ + q(p0(r). Thus we find 

f(r, C, v) oc exp 
2vT 

'u±[v2 + 2u24,(r,0}i)2 

where the ± must be decided according to whether the particle at 00 has positive 
or negative velocity. This distribution function is normalized by demanding the 
n(r, () —> no(r) as ( —^ 00. The net result of this procedure is the following density 
distribution which then goes into Poisson's equation. The overbars on the velocities 
denotes that they have been scaled by u. 

r,0 
n0{r)    2 

VT 
2(l+erf(—T=))-erf 

VT V2' 
1 - vojr) 

vTy/2 
— erf 

1 + üo(r) 

vTy/2 

-1 
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exp 

r.C) 

(l-[v2 + 2Tp(r,0}>)2]dv 

+ r     exp[^(l + [ö2 + 2^(r,C)]^)2]^ (17) 

In this expression we use u0(r) = ^2^{r,0) and u0(r,C) = y^h/K^O) - i>{r,()\- 

The right-hand side of Eq. (8) becomes then 

"Ur) 
(l-n(r,C)/n„(r)) 

With the above right-hand side we solve Eq. (8) for the BGK solution. Under- 
relaxation is now required for convergence. As an example we choose ip(0,0) = 0.1 
and T = l.OeV. Figure 3 compares this soliton with the analytic approximation. 
The corresponding soliton velocities are u/(rptoe(0)) = 0.67 for the analytic approx- 
imation, 0.68 for the CF numerical solution, and 0.80 for the BGK soliton. 

soliton equilibrim function + at r=0 
-l—r_ 

20 100 40 60 
{(cm) 

FIGURE 3.  Comparison of a BGK numerical soliton(solid) and the analytic approximation 

(dashed) for C > 0 
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The m = 1 diocotron instability in single 
species plasmas 

J. M. Finn*1, D. del-Castillo-Negrete* and D. C. Barnes* 
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Abstract. 
According to conventional theory based on the drift-Poisson equations, the m = 1 

diocotron mode is stable, even for hollow density profiles. However, experiments[C. F. 
Driscoll, Phys. Rev. Lett. 64, 645 (1990)] show instability for this mode. These 
results have remained unexplained since 1990. We have found two effects, related to 
compression parallel to the magnetic field, which lead to instability with growth rates 
and other properties in good agreement with the experiments. The first is due to 
curvature of the sheaths at the ends of the trap. The second is the free boundary effect 
due to the linearized perturbation of the plasma length. These effects are described 
in terms of the modified drift-Poisson model, which states the conservation of the line 
integrated density. The modified drift-Poisson equations derived are analogous to the 
shallow water equations of geophysical fluid dynamics (GFD), with the line integrated 
density corresponding to the potential vorticity. This is explained in more detail in [del- 
Castillo-Negrete et al., this volume]. More recent experimental results[A. A. Kabantsev 
and C. F. Driscoll, this volume] show agreement over a wider range of parameters than 
the original experiments. We study the m = 2 mode and show that curvature and free 
boundary effects can increase the growth rate, but it is still small compared to that 
of the m = 1 mode for realistic parameters, and the critical hollowness for stability is 
much greater. Results are also shown for m = 1 modes in the analogous GFD system. 
It is shown that topography variation in cylindrical geometry and free surface effects 
both lead to instability with properties similar to those in the plasma models. 

According to the classical theory of diocotron modes in nonneutral plasmas [1,2], 
the m = 1 mode (where m is the azimuthal mode number, and the magnetic 
field is in the z direction) is stable even in the presence of a hollow density profile. 
However, experiments with such profiles in a Penning-Malmberg trap [3] have shown 
an instability [4], with an exponential growth rate a substantial fraction of the ExB 
rotation frequency. There have been several theoretical attempts [5-8] to explain 
this discrepancy, but the results showed either zero exponential growth rate or 
growth rate orders of magnitude less than found in the experiment. 
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The theory of low frequency behavior, such as that of diocotron modes, is based 
on the drift-Poisson model. This system consists of the continuity equation with 
velocity equal to the E x B drift Uj_ = z x V^/ßo (the magnetic field B = B0z is 
constant) and </> obtained from the Poisson equation, i.e. 

-J! = 0 ,        V2j> = 47ren , (1) 

where D/Dt = d/dt + u± ■ V, —e is the electron charge. 
Our goals here are (i) to review the modified drift-Poisson model, results of 

Ref. [9] on the m = 1 diocotron instability, and the geophysical fluid dynamics 
(GFD) analogy, (ii) to outline an alternate derivation of the free boundary effect in 
Penning-Malmberg traps, (iii) to show new results with the modified drift-Poisson 
model for m = 2 modes, (iv) to investigate the destabilizing effects of topography 
and free surface on an analogous m = 1 mode in GFD. 

THE MODIFIED DRIFT-POISSON MODEL 

The drift-Poisson model is based on an assumption of strictly two-dimensional 
behavior of the plasma in the trap. However, equilibrium computations [9-12] 
show that in general there is curvature in the electrostatic sheaths at the ends of 
a plasma. Based on this observation, we have introduced a new model [9] in order 
to explain the discrepancy between theory and experiment. The equations of this 
model, which we call the modified drift-Poisson model, are derived by integrating 
the three dimensional continuity equation including parallel compression d(nuz)/dz 
in z over —L(r,0,t) < z < L(r,0,t). This treatment is consistent with the fact 
that the plasma is independent of z in the region —L<z<L (neglecting the 
width of the sheaths at the ends, which is of order the Debye length). This leads 
to Dn/Dt + n \uz(L) — uz(—L)] /L = 0. Using the kinematic relations uz(r, 0, L) = 
(D/Dt) L, uz(r, 0, -L) = -(D/Dt) L we find 

§-t(nL) = 0. (2) 

The quantity nL is the line integrated density, and Eq. (2) is the equation for 
conservation of charge in plasma columns aligned with B. In this approximation, 
all quantities are independent of z for — L < z < L (except uz ~ z). Therefore the 
Poisson equation takes the same form as in Eq. (1), and the velocity Uj_ = zx V<j>/Ba 

is also unchanged. The plasma length is of the form L(r,0,t) = LQ(r)+A[(j)(r,0,t) — 
<£o(r)]> where (j>o(r) is the equilibrium potential, and A allows for the possibility of 
a moving boundary; A is in general a linear functional obtained by matching at 
z — L, z = —L to the vacuum region \z\ > L(r,0,t). Equation (2) can be written 
in dimensionless variables in the form 

D „2 ±     V10 
Dt   ±V       L 

Kdl,D_x 
r 80     Dt 

- 0 , (3) 
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where D/Dt is as before the E x B convective derivative. We assume a conducting 
wall at r = rw = 1. 

There is an analogy [9,14] between the modified drift-Poisson equations and the 
shallow water equations [13] of GFD, in which the line integrated density nL cor- 
responds to the potential vorticity, and the first term (the curvature term) in the 
brackets in Eq. (3) is the analog of either topography variation or of latitude varia- 
tion. Specifically, for a cylindrical tank with a sloping bottom at z = — H0[l—A(r)], 
the equation analogous to Eq. (2) states the conservation of potential vorticity q in 
a frame rotating at constant angular frequency £l0: 

Dq _ C + 2Q0 

Wt=0,        *=—j— ■ (4) 

Here, h(r, 6, t) = r](r, 6, t)-H0[l-A(r)\ includes the topography variation as well as 
the motion of the free surface at z = 77 and D/Dt is the convective derivative with 
the geostrophic flow ux-zx Wip. The streamfunction is given by ip = gri/(2ü0), 
g is the gravitational acceleration, and £ is the vorticity V2

±tp in the rotating frame. 
Expanding for Ro « 1, A(r) << 1 (Ro is the Rossby number) and ignoring the 
constant 2^o we obtain the approximation 

where the term proportional to k\ = 4ttl/gH0 is due to the free surface, and k^1 is 
called the Rossby deformation radius. Expanding near some positive radius, A(r) 
contributes a term linear in r. This is called the /?-plane approximation. Expanding 
near r = 0 gives the 7-plane approximation [13], in which the leading order variation 
of A(r) is proportional to r2. We will explore this analogy further in the context 
of an m = 1 fluid instability in the 7-plane approximation. As discussed further 
in Ref. [14], this equation for kR = 0 is analogous to the modified drift-Poisson 
equations, specifically to Eq. (3) with Ä = 0, although there is no analogy in the 
latter system to the terms proportional to k2

R. The terms proportional to A'(r) and 
L'(r) in Eqs. (5) and (3) respectively are both related to z compression, but in the 
former the 3D compression is zero, duz/dz = -V± • Uj_. In the latter, V • Uj. — 0 
and V ■ u = duz/dz. 

MODEL 

Equilibrium computations for Penning-Malmberg traps show that it is appropri- 
ate to parameterize the equilibrium length L0{r) of the plasma as 

L0(r) = Lo(0) (l - Kr2) , (6) 

with the curvature parameter K typically positive [9]. We consider density profiles 
of the form [15] 
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no(r) = no(0) [l - (r/rp)
2f [l + (M + 2) (r/rp)

2] (7) 

for 0 < r < rp and zero otherwise, where rp the plasma radius. The density profile 
is hollow if (JL> 0; in this case the E x B rotation profile fi(r) is also hollow. 

LINEARIZATION AND FREE BOUNDARY 
PERTURBATION 

Linearizing Eq. (3), we obtain 

(w - mSl(r)) V*> + ^ I = JUma^l 4 _ no(w _ mSl(r)) k[$\/L0 , (8) v r rLo 

where we have assumed the normal mode dependence $ ~ etm»-tut an(j w js ^e 
complex frequency. This equation reduces to the conventional Rayleigh equation if 
the terms on the right due to variation of L are zero. 

The free surface linear perturbation k[$\ is computed by matching to the vacuum 
region. In Ref. [9] we showed that by requiring continuity of the normal as well as 
tangential components of the electric field E at z — Lo{r) + A[$\ one obtains the 
following equation for A: 

n0(r)Ä-[l + L'0(r)
2](9^)e , (9) 

where the subscript e denotes the external region just to the right of z = L0(r). 
In order to show the equivalence of an alternate matching approach [16] with 

ours, we rederive Eq. (9). Following this alternate approach, we first write the 
equilibrium density in the limit of zero Debye length as n{r, z) = n0(r)Q{L0(r) - z), 
where 6 is a step function. Then, n has a singular component due to axial motion 
ns = -kdzn(r, z) given by 

n. = Rn0{r)6(z - L0{r)) . (10) 

Thus, the perturbed density n has a surface charge contribution even though the 
full nonlinear density is bounded, consistent with continuity of the full nonlinear 
electric field E. Defining * = [z - L0(r)] /Jl + L'0{r)2, such that V* is the unit 
outward normal to the curved equilibrium plasma boundary at * = 0, we write ns 

in terms of the distribution a of surface charge at z — L0(r) as 

«, = **(*),        0=      ~Ano{r)      . (11) 

Relating the jump in the normal derivative | V* • V^l to ö and requiring 
L J z=Lo(r) 

continuity of the tangential derivative of 0, we obtain 
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NL =LoM \A + £'oM2 
(12) 

Using dz<f> = 0 in the plasma z < L0(r), we recover Eq. (9) from Eqs. (11) and (12), 
showing that this alternate formulation is identical to that discussed in Ref. [9]. 

To express (dz(p\ at z = L0(r) in terms of </> at z — L0{r) involves solving 

Laplace's equation in the vacuum region L0(r) < z < Lo(0) + b, where b is the 
length of the end-cap, and with Neumann boundary conditions at z — L0(0) + 6, 
a reasonable approximation to open boundary conditions. In general, this can 
be done in terms of a Green's function. However, for b « rw = 1, assuming 
Lo(0) — L0(r) = 0(b), there is a differential approximation [9]: 

(dz$)e = bf(r)Vl4>, (13) 

where /(r) = 1 + [Lo(0) - L0(r)]/b. Substituting Eqs. (9),(13) into Eq. (8), using 
Eq. (6), and neglecting terms of order K

2
, we find f(r) = 1 + Kr2jr\ and 

m 
(1 + 77 + Kr2)[w - mft(r)]V;j> + — 

2«x 

1 — K,r' 
;no <£ = 0, (14) 

where r] = b/Lo(0). Note that we have assumed rj ~ K. 

For Ä = 0 in Eq. (8), i.e. ignoring free surface effects, and using Eq. (6), we find 

(w - mü) V]_4> + — 
r «-&) 

n0 <t> = 0 . (15) 

x10<9 Scaling near the ousel of «nobility   (a) 

ii r 

Stability diagram ß) 

RAYLEIGH  / 
STABLE   / STABLE 

FIGURE 1. (a) Scaled growth rate y/ß2 as function of n/p, for fi = 0.05 (top), 0.10, 0.15, 0.20, 
and 0.25 (bottom) from Eq. (15). The overlap of the curves shows that for {K,H) -> 0, 7(/c,/i) 
converges to the self-similar form ß2T(K/ß) of Eq. (16). (b) Stability diagram p, K. The solid 
curve is the stability boundary computed numerically, and satisfies K//J. < 1.55 for ß, K « 1, with 
little variation for K,H ~ 1. The dashed line is the modified Rayleigh criterion [n0{r)L0(r)]' < 0 
stability boundary, which for rp = 0.59 gives n/p. < 2.87. 
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Note that along with 77 = 0 the term nr2 in the factor multipling V2^ in Eq. (14) 
is dropped, because it is included there under the assumption 77 ~ K. The two 
significant parameters in Eq. (15) are the hollowness \i of Eq. (7) and K. 

RESULTS WITH CURVATURE 

For K > 0 and 77 = 0, i.e. using Eqs. (15) and (7) with \x > 0 (hollow), a mode 
with a positive growth rate 7 is found. For fixed n and K —> 0, 7 scales as re2/3 

for K small, and u)r —> Q,max, the maximum of tt(r). The fractional power and 
threshold K = 0 are associated with a boundary layer near Qmax. We have found 
that u)T decreases slowly from Qmax as K is increased, giving two resonant radii 
(where Q(r) = wr). The perturbation decays rapidly outside the radius where Q(r) 
is maximum, showing the self-shielding property observed in the experiments [4]. 
For K < 0 the mode is stable (7 = 0) with a real frequency u>r that increases above 
&max as \K\ increases, i.e. the mode becomes nonresonant. More details are given 
in Ref. [9]. 

For ji, K —> 0, there are scaling properties due to the localization of the mode 
inside the radius rn where Q(r) is maximum. For fi, K small but K//J ~ 1, and 
using r ~ rn ~ fi1/2 we find the scaling [9] 

7/M2 = T(K/II) . (16) 

The scaled growth rate 7//J2 as function of K//J from Eq. (15) is shown in Fig. 1- 
(a) for five values of /a. The results are in agreement with the scaling of Eq. (16). 
From the scaling 7 ~ /c2/3 as K -> 0 and these results we conclude 7 ~ K

2
/
3
///

3
 for 

K « ß. From Fig. l-(a) we observe further that the marginal stability point to 
the right satisfies K//I ~ 1.55. This marginal stability curve is shown in Fig. l-(b). 
Note that the marginal stability curve is nearly linear even for K, \I of order unity. 

The linearized equation (15) for A = 0 has a modified Rayleigh criterion. The 
usual derivation [2] is easily generalized to give a sufficient condition for stability: 
the equilibrium is stable if the line integrated density n0{r)L0(r) is monotonic. This 
condition is satisfied for n sufficiently large since the length L0(r) [c.f. Eq. (6)] is 
a decreasing function or r. The sufficient condition from the modified Rayleigh 
criterion as well as the actual marginal stability curve n/ß = 1.55 are shown in 
Fig. l-(b). 

Equilibrium computations show that K increases as the length decreases, and 
that values K ~ 1 can be obtained for short plasmas [9]. Thus, the linear results 
shown on Figs. 1 predict stability for short plasmas. This stabilization has been 
observed in experiments [17]. 
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RESULTS WITH CURVATURE AND FREE 
BOUNDARY 

In Figure 2-(a) we show the growth rate 7 obtained from Eq. (14) as a function 
of 77 for fi = 3 and eight equally spaced values of K between 0 and 0.35. For these 
values of 77 the differential approximation of Eq. (13) used in Eq. (14) is adequate. 
These values of j/u}r are in reasonable agreement with experiments [4]. We find 
that the behavior as a function of 77 is similar to the behavior as a function of K. 

In particular, 7 ~ rf^ for K — 0, 77 > 0, and the mode is stable and nonresonant 
(with wr > £lmax) for K = 0,77 < 0. 

It is easily seen that the linearized equation in the presence of curvature and 
free boundary effects in the differential approximation, Eq. (14), satisfies the same 
modified Rayleigh criterion as for 77 = 0, namely (n0Lo)' < 0. However, the observed 
stabilization for large 77 and K = 0 [9] is not predicted by the modified Rayleigh 
criterion. Note also that the modified Rayleigh criterion applies to all modes with 
m^O. We conclude that the usual diocotron modes with \m\ > 1 can in principle 
be stabilized by sufficiently large curvature. We return to this point in the next 
section. 

RESULTS FOR M = 2 MODES 

We have obtained results for m = 2 modes in the presence of curvature and free 
boundary, i.e. K and 77. First, we have studied the case 77 — 0, with rp = 0.50 and 
0 < V < 0.06. (V = 1//Z is the hollowness parameter written as A in Ref. [15].) 
For K between 0 and 0.2, we found that the growth rate relative to that obtained 

(b) 

's** 

* 

Y/">1 
\V\ \T1=0.1 

M 

- 
T1=0 

0.0      OS       1.0      1.5      2.0      IS      3.0 12 3 4 5 
D Il0-2 

FIGURE 2. (a) Dependence of the growth rate 7 on 77 according to Eq. (14), for eight equally 
spaced values of K between 0 and 0.35 and ß - 3. (b) Growth rate 7 for the m = 2 mode, relative 
to the m = 1 diocotron frequency wi = ü(r = rw). Results are plotted for rw = 0.50, K - 0 as 
a function of the hollowness parameter V = l//x of Ref. [15] for five equally spaced values of the 
free boundary parameter 77 between 0 and 0.1. 
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in Ref. [15] changes by less than 0.1%, the real frequency changes by less than 
1%, and the marginal stability point V w 0.05 does not change significantly. In 
Fig. 2-(b) we show the growth rate 7, scaled to the m = 1 stable diocotron mode 
frequency wi = ft(r = rw), as in Ref. [15] for n = 0, 0 < 77 < 0.1 and V in 
the above range.  These results show that in this range of 77 the growth rate of 
m = 2 modes increases by about a factor of two and the relative change in the real 
frequency changes by a factor up to 10%, i.e. 6ur/wr ~ 77. The absolute changes 
5j and 6wT are comparable. However, the marginal stability value of V increases 
by only a small amount.  As described in Ref. [15], these modes are destabilized 
by a small population of resonant particles. Because of this local resonant nature 
their growth rates are very small {-y/wr ~ a few times 10~3 [15].)   (However, it 
should be noted that a m = 2 mode of the drift-Poisson equations with a much 
larger growth rate has been recently found [18].) The results with K > 0, or the 
results with 77 > 0 of Fig. 2-(b), show that the conclusion of very small growth 
rates still holds. Moreover, these modes for 77 = K - 0 have a very large critical /x 
(small V) for instability, which does not change substantially for reasonable values 
of K and 77. Furthermore, the possible stabilization for large K is irrelevant for the 
m = 2 modes; they are unstable only for a large degree of hollowness V < 0.05 [15] 
(consistent with Fig. 2-(b)), i.e. \i > 20, so that an unrealistically large curvature 
K ~ \i would be required for the modified Rayleigh criterion to be satisfied. Such 
values of K, are not observed in equilibria [9].   Indeed, the representation (6) is 
invalid for K, > 1/r2,. It is anticipated that the m > 2 modes behave similarly to 
those for m = 2. 

In conclusion, the m — 1 mode in the presence of curvature or free boundary 
has a much larger growth rate than the resonant m — 2 (and higher) modes. 
Furthermore, end effects, which can be further destabilizing, do not change this 
conclusion qualitatively. (However, the faster growing m — 2 mode of [18] can 
have a growth rate which is comparable to that of the m = 1 mode driven by end 
effects.) Also, the m = 1 mode has a small critical hollowness ßc for stabilization, 
unlike the resonant m — 2 and higher modes, and /xc goes to zero as K goes to zero. 

M = 1 RESULTS IN ANALOGOUS FLUIDS 

Based on the above results, showing instability for m - 1 modes in Penning- 
Malmberg traps with hollow density profiles, and the analogy with geophysical fluid 
dynamics, we have investigated the m = 1 stability properties of rotating fluids with 
topography variation, including free surface effects. As a concrete example, consider 
a rotating cylindrical tank with topography, i.e. a sloping bottom. Linearizing 
Eq. 5, we obtain 

(w - mü(r)) (V2J - k2
Ri>) + j [Ci(r) - rÜ(r)k2

R + Kr] $ = 0 . (17) 

Here, Co(r) is the equilibrium vorticity and Q(r) = r^dipo^/dr is the equilib- 
rium rotation velocity, both in the frame rotating at f20.    We have taken the 
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relative topography A(r) = er2/rl, where e « 1 and rw is the radius of the 
tank, and defined v = 4eQ0/V£,. The relative topography A(r) includes the equi- 
librium parabolic deformation of the surface due to the rigid rotation to0, i-e. 
A(r) -> A(r)-r29,l/(2gH0). The free surface terms proportional to k2

R in Eq. (17) 
have no analog in the Penning trap. 

If Fig. 3-(a) we show the growth rate 7 as a function of v for three values 
of kR. Note that instability occurs for v < 0. There is a zero threshold in v 
for kR = 0, with 7 ~ \v\2/3 for small \v\, and stabilization is observed for large 
\v\, similar to the plasma case. Again, there is a modified Rayleigh criterion for 
Eq. (17): a sufficient condition for stability is that (0(r) - kRip0(r) + 2QA(r) must 
be decreasing, or Q(r) - rU(r)k2

R + vr must be negative. In Fig. 3-(b) we show 
7 as a function of kR for six values of v. The growth rate increases with kR and 
\u\. For v = 0, the curve is cut off for small kR because of the resolution required. 
As in the plasma case, the real frequency approaches timax from below as \v\ or kR 

decreases, and for v > 0 the mode is stable with a real frequency uT > ümax. That 
is, for parameters for which there is instability there are two resonant radii, where 
u)r = fi(r), whereas when there is stability the mode is nonresonant. The mode 
structure has the self-shielding property of the plasma case: ■ip goes to zero rapidly 
just outside £2(r) = Clmax. Since the total height is h = H0[l - A(r)] for zero free 
boundary perturbation, we see that instability occurs when the total height is an 
increasing function of r, h'(r) = -H0A'(r). (Note that this suggests instability 
even for A' = 0, due to the equilibrium parabolic deformation, if the vorticity in 
the rotating frame is hollow.) The fluid and plasma have opposite stability criteria 
because the potential vorticity in the lab frame is, respectively, C,/h and nL. That 
is, advection into a region of increasing height (length) increases the vorticity in 
the fluid case but decreases the vorticity (i.e. n) in the plasma case. 

FIGURE 3. (a) Growth rate for the m = 1 mode from Eq. 17 as a function of v for three equally 
spaced values of kR between 0 and 1.0. (b) Growth rate for the m = 1 mode from Eq. 17 as a 
function of kR for six equally spaced values of v between 0 and -0.1. 
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COMPARISON WITH EXPERIMENTS 

As discussed, the theoretical results for the m = 1 diocotron mode are in good 
agreement with the earlier experiments [4]. Recent experiments [19] over a wider 
range of parameters show further agreement. Specifically, the agreement between 
theory and experiment includes: (i) the scaling 7 ~ K

2
I

Z
 for small K; (ii) the sta- 

bilization for short plasmas (large K); (iii) the decrease of the real frequency for 
increasing positive K; (iv) stability for K < 0 with real frequency that increases 
above Qmax with |re|; (v) the self-shielding property. There appears to be a discrep- 
ancy in 7 of about a factor of two, but it is possible that this may be resolved by 
a Green's function treatment not restricted to b/rw « 1. (The conditions for the 
validity of the differential approximation of Eq. (13) are only qualitatively satisfied 
in the experiments.) Also, Eqs. (14),(15) have the property that the perturbed 
density n = V\<f> should be zero where [no(r)L0(r)]' is zero. In the experiments [4], 
[19], \n\ does indeed have a minimum there, but its value appears to be positive. 
This possible discrepancy may also disappear in a Green's function treatment. 

ACKNOWLEDGMENTS. We wish to thank R. C. Davidson, C. F. Driscoll, D. 
Dubin, A. A. Kabantsev, and T. M. O'Neil for stimulating and useful discussions. 

REFERENCES 

1. Levy, R. H., Phys. Fluids 8, 1288 (1965); 11, 920 (1968). 
2. Davidson, R. C, Theory of Noneutral Plasmas (Benjamin, Reading, MA, 1974). 
3. Malmberg, J. H. and deGrassie J. S., Phys. Rev. Lett. 35, 577 (1975). 
4. Driscoll, C. F., Phys. Rev. Lett. 64, 645 (1990). 
5. Smith, R. A. and Rosenbluth, M. N., Phys. Rev. Lett. 64, 649 (1990). 
6. Smith, R. A., Phys. Fluids B 4, 287 (1992). 
7. Rasband, S. N., Spencer, R. L., and Vanfleet R. R., Phys. Fluids B 5, 669 (1993). 
8. Rasband, S. N., Phys. Plasmas 3, 94 (1996). 
9. Finn, J. M., del-Castillo-Negrete, D., and Barnes D. C, to appear in Phys. Plasmas, 

Oct. 1999. 
10. Prasad,, S. A. and O'Neil, T. M., Phys. Fluids 22, 278 (1979). 
11. Peurrung, A. J. and Fajans, J., Phys. Fluids B 2, 693 (1990). 
12. Spencer, R. L., Rasband, S. N., and Vanfleet, R. R., Phys. Fluids B 5, 4267 (1993). 
13. Salmon, R., Lectures on Geophysical Fluid Dynamics (Oxford University Press, NY, 

1998). 
14. del-Castillo-Negrete, D., Finn, J. M., and Barnes, D. C, this volume. 
15. Davidson, R C. and Felice, G. M., Phys. Plasmas 5, 3497 (1998). 
16. O'Neil, T. M. and Hilsabeck, T., personal communication(1999). 
17. Driscoll, C. F., Malmberg, J. H., and Fine, K. S., Phys. Rev. Lett. 60, 1290 (1988). 
18. Goswami, P., Bhattacharyya, S. N., Sen, A., and Maheshwari, K. P., Phys. Plasmas 

6, 3442 (1999). 
19. Kabantsev, A. A. and Driscoll, C. F., this volume. 

207 



End Shape Effects on the m0= 1 Diocotron 
Instability in Hollow Electron Columns 

A.A.Kabantsev and C.F.Driscoll 

Physics Department, University of California at San Diego 
La Jolla, California 92093 

Abstract. Magnetically confined hollow columns of electrons exhibit a robust exponential me =1 
diocotron instability, whereas standard 2-D fluid theory predicts at most algebraic growth. This 
discrepancy suggests that experimental subtleties such as finite axial length of the plasma column 
must be considered. Here, we present a systematic analysis of our experiments to determine the 
detailed influence of the plasma end curvature on the observed diocotron instability. Observed 
dependencies of unstable mode frequency, growth rate and spatial eigenfunction as a function of 
the plasma end curvature are in quantitative (factor-of-two) agreement with recent quasi-2D 
extension of the fluid theory. 

INTRODUCTION 

Ancient experiments by Driscoll (1) established that hollow electron columns 
exhibit a robust exponential niQ = 1 diocotron instability, whereas standard 2D fluid 
theory predicts at most algebraic growth (2). There have been several theoretical 
attempts to explain this instability. In Refs. (3, 4) it was shown that the effects of finite 
gyroradius lead to an exponentially growing instability, but with negligible growth rate 
for values characteristic of the experiments. Smith (5) has shown that shifts in the 
azimuthal rotation frequency due to finite plasma length can lead to exponential growth 
rates comparable to the experiments; but the shifts were ad hoc, making quantitative 
comparison with experiment difficult. Most recently, Finn et al. (6) have included the 
effect of plasma end curvature in this quasi-two dimensional analysis, making direct 
test of the theory possible. The instability mechanism involves compression of the 
plasma parallel to the magnetic field, with conservation of the line-integrated density. 

Here, we present detailed experimental measurements of how the radial variation of 
the plasma length, i.e. curvature of the ends, affects the ntg = 1 diocotron instability of 
partially hollow electron columns. Direct tests of the theory are provided by changes of 
the plasma end curvature due to changes of the trap length Lc (normalized to the wall 
radius Rw) or of the plasma self-potential (j>0 (relative to the confining potential Vc). 
The measured dependencies of the unstable mode frequency, growth rate and spatial 
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eigenfunction as a function of the plasma end curvature are in quantitative (factor-of- 
two) agreement with this quasi-2D extension of the fluid theory. 

EXPERIMENT 

Figure 1 shows the experimental device with the imaging diagnostic. Electrons from 
a spiral tungsten filament are trapped in a series of grounded conducting cylinders 
(radius Rw = 3.5 cm) enclosed in a room-temperature vacuum chamber (P < 10"9 torr). 
The electrons are contained axially by negative voltage Vc (up to -300 V) on the end 
cylinders, and confined radially by a uniform axial magnetic field Bz = 4 kG, resulting 
in a confinement time of about 100 sec. The trapped electron column typically has 
density n < 107 cm-3, radius Rp~2 cm, and confinement length 3 < Lc < 90 cm. The 
electrons have average kinetic energy T ~ 1 eV and are effectively collisionless. The 
kinetic energy perpendicular to Bz is bound up in cyclotron orbits, which are fast 
(fc ~ 10 GHz) and small enough (rc = 5 (im) to be ignorable. The axial bounce 
frequency of an electron fb s v/2Lc is large compared to the ExB drift rotation 
frequency fExB, so the (r, 9) flow of the electrons can be described by the 2D drift- 
Poisson equations. 

VP V, 

phosphor 
screen 

FIGURE 1. The cylindrical experimental apparatus with phosphor screen/CCD camera diagnostic. 

The confined electrons are sensed and manipulated by antennas in the wall, and, at 
any desired time, the z-integrated electron density Q(r,8, t) is accurately measured 
(destructively) by dumping the column axially onto a phosphor screen biased to 15 kV, 
from which the luminescence is imaged by a low noise 512x512 pixel xl6 bit CCD 
camera. The shot-to-shot variations in the initial images are small, so the temporal 
dependence can be inferred from a sequence of shots with essentially identical initial 
conditions and different hold times, t. 

For axisymmetric plasmas we used an (r, z) solution to Poisson's equation to 
determine the radial dependence of the equilibrium plasma length L0(r) and z-averaged 

209 



density KQ(T) = Q(r) I Lo(r). The z-dependence of plasma density, n(r, z), and self- 

consistent space-charge potential, (fij, z), are routinely reconstructed from the 
measured z-integrated density Q{r), the measured electron temperature T(r), and the 
known boundary conditions at the walls, assuming only local thermal equilibrium 
along field lines. Following Ref. (6), we determine here the plasma end as 
equipotential surface, where <p(r, z) - (fir, 0) = Tie. From the plasma end shape we find 
the plasma end curvature x(r) = - L0"(r) I 2L0(0), where L0"(r) = (d2/dr2) L0(r). For 

enough high confining potential, Vc » <f>0, the equilibrium plasma length L0{r) has 

Lo"(r) < 0 (and thus Kir) > 0) for monotonic as well as hollow density profiles, except 

for cases with very broad density profiles with rn -» Rw, where r„ is defined by the 

maximum of g(r). In practice, we use parabolic approximation of L0(r) for r < r„, and 
determine the plasma end curvature as 

if s {L0(0) - L0(rn)} IL0(0)(rn IRj*. 

For the experiments described here, we apply a small nig = 1 "seed" perturbation to 
a stable, quiescent, monotonic and azimuthally symmetric density profile, then make 
the density profile partially hollow (by ejection from the center), and then observe and 
measure the time evolution of the resulting instability. 

The initial stages of this evolution can be analyzed from the perspective of linear 
modes. We consider the mg= 1 component of the data, given by 

Sn{r,t)= $d6n{r,6,t)eie . 
o 

From the sequence experimental images, we observe that two frequency components 
characterize the data rather completely, and that these frequencies do not vary with 
radius. Thus, the rriQ = 1 data component can be computationally fitted by a sum of 
these two modes (q = 1,2), as 

Mr,t) = EqSnq{r) e12^ ety. 

The least-squares fit determines the mode frequencies /„, the growth rates yq, and the 

radial eigenfunction dnq(x). As a rule, we fit to data at sixty radii and forty times. 

Figure 2 shows the amplitude and phase of the radial eigenfunction for a typical 
unstable mode. The eigenfunction is approximately proportional to dQ/dr inside the 
radius rn, but, in contrast to the stable mode, the eigenfunction for r > rn is unrelated to 

dQ/dr. This outer part of the eigenfunction is close to zero for small plasma end 
curvature, but increases with curvature. The calculated electric field arising from the 
mode shows the self-shielding property, going to zero rapidly just outside the radius rE 

defined by the maximum of fE^(r). 
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FIGURE 2. Amplitude and phase of the measured unstable eigenfunction. Also shown are 
the initial hollow z-integrated density profile and the initial Exß drift rotation/£Xg(r). 

Figures 3 and 4 show the normalized frequency and growth rate of the unstable 
mode as a function of K. This data all has hollowness "o(OVnmax ~ 0-77. The curvature 

«•was varied by varying the confinement potential % < Vc < 300 V, and by changing 
the electrode lengths (b, Lc). Here, b is the length of the end (confining) cylinders, and 

Lc is the confinement length. The mode frequency / slightly increases as K decreases, 

and in the limit K—> 0 approaches the maximum value fmax =fExB(rE)> l-e-f-fmax. 
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Figure 3. Measured frequency of the instability as a function of the plasma end curvature K, for 
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FIGURE 4. Measured growth rate of the instability as function of the plasma end curvature K, for 
»oW/'W = 0.77. 

The unstable mode growth rate /increases with ras x"2/3 for K"< 0.5, and the all 
curves have the same coefficient ß ~ 0.33 ± 0.01 in the least-square fit 

y   =cc+ßK2n. 
Also we observe that there is some offset in growth rate at K= 0, which depends on 

confinement geometry. We attribute this to some contribution to the instability from a 
linear perturbation of the plasma length (6). For K > 1 the growth rate saturates and 
then decreases as K increases. This behavior is similar to the behavior of the growth 
rate versus the parameter A in Ref. (5), or versus the parameter K"in Ref. (6). 

The equilibrium becomes stable in the experiments for K> Kcrit, where Kcrit depends 
on riQ(0)/nmax, and in the experiments with negative K. Unfortunately, the first case is 
achievable only for very short (Lc /Rw < 2) electron columns, making accurate 
measurements of the growth rate near the transition point difficult due to a lack of 
manipulating electrodes. The second case (negative curvature) is achievable for 
extremely long confinement length (Lc /Rw > 20), extremely high confining voltage 

(Vc Wo - 1^)' anc* very broad hollow density profile (rn > 0.5RW). In particular, we 
observe the rriQ=\ mode to be stable on a hollow column with Lc = 88 cm, Vc ItpQ = 10, 
and rn = 0.5RW, with a calculated x(0) = -0.024. 

CONCLUSIONS 

We have studied experimentally the dependence of the m Q = 1 unstable mode 
eigenvalues (growth rate and real frequency) on three dimensionless plasma 
parameters: confinement length, Lc /Rw, the self-potential, <J>Q /VC, and the hollowness, 
riQ(ß)lnmax, describing the equilibrium of the electron column. 
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We have shown that there is a strong influence of the curvature of the ends of the 
electron column. This is not only modifies the relation between the finite axial length 
and the rotation frequency, but it also has important consequences with regard to the 
stability of the diocotron modes. 

We have established the existence of a clear functional dependence between the 
plasma end curvature and the growth rate of the unstable mode, and we have also 
shown that there is some influence of axial confinement geometry on the instability. 
All of our experimental results, including the dependencies of unstable mode growth 
rate, frequency and spatial eigenfunction, are found to be in factor-of-two agreement 
over a wide range of plasma end curvature K with predictions based on the model of 
quasi-2D finite length correction of the eigenvalue equation (6). Specifically, in both 
the experiment and the model, the unstable mode has following features: 

S for small K the growth rate scales as y<x K-2/3 ; 

S  for K > 1 the growth rate saturates and then decreases as K increases until 
the mode is stabilized for curvatures K > Kcrit(nmax/no(0)); 

■S  for K> 0 the frequency/ decreases from fmax =fExB.(rE) as «"increases ; 

•S  for K< 0 the mode is stable with frequency/ >fmax ; 
S  the unstable mode has a "self-shielded" eigenfunction, i.e. the perturbed 

potential and density vanish outside the plasma radius. 
Despite these intriguing similarities, there are still a factor-of-two discrepancy in the 

growth rate and some discrepancy in the eigenfunction between the experiments and 
the calculation of Ref. (6). From the experiments we have y= a+ ßK2ß with ß ~ 0.33 
(for riQ(0)/nmax ~ 0.77), which is nearly independent from (b, Lc), while from the model 

of Ref. (6) we can estimate it as ß ~ 0.16. In our experiments the eigenfunction of the 
unstable mode has a deep minimum, but it does not vanish totally inside the plasma 
radius; while in the model the density eigenfunction has sharp zero at that radius where 

Q' s (9/9r)[L0(r)-n0(r)] = 0. The last problem may be resolved by considering a range 
of electron kinetic energies: different kinetic energies would give different effective 
plasma lengths L0 and therefore different radii where {LtfiQ)' = 0, so the eigenfunction 
would be expected to have a smeared minimum rather than a true zero. 
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Measurement of Plasma Mode Damping in Pure 
Electron Plasmas 

J. R. Danielson and C. F. Driscoll 
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Abstract. Measurements of nv=0 Trivelpiece-Gould modes in a finite length pure 
electron plasma show damping rates ylcj ~ JO"3 to 10"' with no correspondence to 
standard linear theory. The modes are excited by a short resonant burst; and the wave 
potential versus time is detected at the other end of the plasma. Measured mode 
frequencies w agree with calculations of finite kz Trivelpiece-Gould modes using the 
experimental density profile and plasma temperature. For low amplitude excitation, 
the measured wave potential damps exponentially in time (at rate y) independent of 
amplitude. However, measured damping rates show no correspondence with linear 
Landau damping, nor with dissipation due to compressionai viscosity, nor with recent 
estimates of "bounce-harmonic" damping. 

INTRODUCTION 

Theories of non-neutral plasma modes have been notoriously inaccurate in 
predicting the imaginary part of the mode frequency (i.e. damping or growth). This 
may be because the trapped particle velocity distribution is easily perturbed by the 
wave, or because realistic boundary conditions for finite length plasmas are difficult 
to describe analytically. For example, in the "Rotating Wall" compression of a plasma 
column, finite kz Trivelpiece-Gould resonances provide the coupling, but the mode is 
apparently nonlinear, and no connection has been made to theoretical damping rates 
[1,2]. In this, and other circumstances, theory correctly predicts the measured real part 
of the wave frequency but cannot explain the mode damping mechanism. 

The current study investigates damping of plasma waves where the wavelength 
is comparable to the plasma size, and the waves are in the small amplitude linear 
regime. Most single species plasmas, being fundamentally finite in extent, cannot 
satisfy all of the theoretical assumptions for Landau damping [3]. It is hoped that these 
measurements will help in the discussion of how Landau damping is modified in finite 
systems and to investigate the form of collisionless damping in trapped non-neutral 
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plasmas. 
To that end, we present measurements of damped axially symmetric (me=0) 

Trivelpiece-Gould modes in pure electron plasmas. The measured rates ylco are found 
to be independent of amplitude, independent of magnetic field, and to have a 
temperature dependence that does not correspond with linear Landau damping nor with 
dissipation due to compressional viscosity, nor with recent estimates of "bounce- 
harmonic" damping. 

EXPERIMENT 

We confine the plasmas in a Penning-Malmberg trap [4,5], shown schematically 
in Figure 1. Electrons from a tungsten filament are confined in a series of conducting 
cylinders of radius Rw = 1.27 cm, enclosed in a vacuum can at 4.2 K, with background 
pressure < 1013 torr. The electrons are confined axially by negative voltages 
(typically Vc = -200V) on cylinders LI, L2, and L6; radial confinement is provided 
by a uniform axial magnetic field, with 1< Bz < 4 Tesla. The trap is operated in an 
inject-hold-dump cycle. The plasma is dumped onto collector plates which gives a 
coarse density profile. The trapped plasma typically has central density 0.5 < no < 
5xl09 cm"3, radius Rp ~ 0.05 cm, and length LP ~ 4 or 8 cm. 

The plasma temperature is measured by slowly ramping the dump gate voltage 
while measuring the collected charge as a function of confinement voltage. Initially, 
particles with the highest energy escape, and these are fitted to the exponential tail of 
a Maxwellian to give an estimate to the plasma temperature. For plasmas with thermal 
energies T 2: 0.2eV this measurement is accurate to about 10% [4,6]. 

B -t> 
Dump Collectors 

P3 
U   Pb P1 

Wave Detection 

Figure 1. Schematic of CV apparatus with mode excitation electronics. 
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The modes are excited by a short burst (5-20 cycles) at the wave resonant 
frequency applied to cylinder L4. The excited plasma wave is measured by detecting 
the image charges induced on cylinder LM, using either a low noise amplifier with Zin 
= 50Ü // 500pF or a high input impedance amplifier with Zm = 1 MÜ // 500pF; the 
choice of amplifier had no effect on the experimental results. This signal is fed into 
either a fast digital oscilloscope or into a RF spectrum analyzer. A second generator 
can be attached to cylinder L3 (for example) to externally heat the plasma to an 
elevated temperature [7]. 

RESULTS 

A typical measurement of the wave dispersion is compared to theory in Figure 
2. The measured real frequencies agree closely with numerical predictions of m9=0 
Trivelpiece-Gould modes from a solution of the drift-kinetic equations using the 
experimental density profile and temperature [8]. 

Figure 3 shows the received wave amplitude versus time for different launched 
amplitudes; here the driving voltage for each curve is a factor of two bigger than the 
previous, starting with 10mV. It can be seen that the wave damps exponentially and 
the damping rate y is unchanged for the amplitude changing by more than a decade. 

Figure 4 shows the measured scaled damping rates y/o» for modes m* = 1,2,3,4 
as a function of plasma temperature. Two general trends are apparent: (1) for 
temperatures below about leV, y/co is less for the higher frequency (i.e. high nt) 
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modes; (2) for temperatures above about leV, ylu> is approximately independent of 
mode frequency. 

The independence of frequency would be expected for a process such as Landau 
damping that only depends on the phase velocity (VPh = co/k « constant). 

There are several curves representing numerical calculations of Landau 
damping. The first curve, labeled LD, is the standard wave-particle resonance formula 
that only depends on the ratio of the wave phase velocity to the plasma thermal 
velocity. For low temperatures, the Landau damping rate increases exponentially with 
temperature. At high temperatures, this increase is moderated by the increase in mode 
frequency and phase velocity. 

Some theory work for finite-length plasmas suggests that mode wavelengths are 
not strictly given by integer multiples of the plasma length [8,9]. Specifically, for long 
columns, Ref. 8 gives a formula for the "effective" plasma length Lar > Lp, with the 
mode wavenumber given by kz = xml Letr. An analysis of the mode potential in terms 
of the plasma length gives rise to a summation over all bounce harmonics of the 
electron motion. The curves labeled BRH estimate this "bounce-resonant-harmonic" 
damping enhancement for the mz=l and mz=2 modes [10]. Note that the bounce- 
resonant curves are always above the single wave resonant curve. Although the 
bounce-resonant curve BRH mz=l is within a factor of 10 of the measurements, the 
theoretical dependence on m* is opposite to the experimental data. 

A theoretical estimate of damping from collision induced compressional 
viscosity has been derived using the second viscosity coefficient found in Ref. 5. The 
result is y/u)« 4 (kAo)2 vxt/ to, where k?. « TtmJLp, AD is the plasma Debye length, and 
VJ.II is the perpendicular to parallel equilibration rate [4]. For the experiments 
presented here, kzAx> ^ 10"2; thus y/co for compressional viscosity is of order 108. For 
the purpose of comparison only, we display vxl/o>i, where «i is the frequency of mode 
nk=l. 

CONCLUSIONS 

The damping of long wavelength axially symmetric Trivelpiece-Gould modes 
has been measured. The excited modes appear to be linear, and decay exponentially 
at a rate independent of amplitude. The damping rate y/a> has been measured over 
more than a decade in temperature and shows little agreement with the standard theory 
of linear Landau damping nor with viscous dissipation. 

ACKNOWLEDGMENTS 

The authors thank Drs. R.E. Pollock, R.L. Spencer, J.M. Kriesel, D.H.E. 
Dubin, E.M. Hollmann, and F. Anderegg for many interesting discussions. We also 

218 



thank Dr. Spencer for the use of his drift kinetic computer code. This work was 
supported by the National Science Foundation and the Office of Naval Research. 

REFERENCES 

1. F. Anderegg, E.M. Hollmann, and C.F. Driscoll, "Rotating field confinement of pure electron 
plasmas using Trivelpiece-Gould modes," Phys. Rev. Lett. 81, 4875 (1998). 

2. E.M. Hollmann, Experimental Studies of Cross-Magnetic-Field Transport in Nonneutral Plasmas. 
Ph.D. Dissertation, UCSD (1999). 

3. L.D. Landau, "On the Vibrations of the Electronic Plasma," J. Phys. U.S.S.R. 10, 25 (1946). 
4. B.R. Beck, Measurement of the magnetic and Temperature Dependence of the Electron-Electron 

Anisotropie Temperature Relaxation Rate. Ph.D. Dissertation, UCSD (1990). 
5. B.P. Cluggish, Experiments on Asymmetry-Induced Particle Transport in Magnetized, Pure Electron 

Plasma Columns. Ph.D. Dissertation, UCSD (1995). 
6. D.L. Eggleston, C.F. Driscoll, B.R. Beck, A.W. Hyatt, and J.H. Malmberg, "Parallel energy 

analyzer for pure electron plasma devices," Phys. Fluids B 4, 3432 (1992). 
7. B.P. Cluggish, J.R. Danielson, and C.F. Driscoll, "Resonant particle heating of an electron plasma 

by oscillating sheaths," Phys. Rev. Lett. 81, 353 (1998). 
8. J.K. Jennings, R.L. Spencer, and K.C. Hansen,  "Numerical calculations of axisymmetric 

electrostatic modes for cold finite-length non-neutral plasmas," Phys. Plasmas 2, 2630 (1995) 
9. S.A. Prasad and T.M. O'Neil, "Vlasov theory of electrostatic modes in a finite length electron 

column," Phys. Fluids 27, 206 (1984). 
10. R.L. Spencer, personal communication (1997). 

219 



SECTION 4 

TRANSPORT 



Measurement of Cross-Magnetic-Field 
Heat Transport due to Long Range 

Collisions 

E.M. Hollmann, F. Anderegg, and C.F. Driscoll 

Department of Physics 
and 

Institute for Pure and Applied Physical Sciences 
University of California at San Diego, la Jolla, CA 92093-0319 USA 

Abstract. Cross-magnetic-field heat transport in a quiescent pure ion plasma is found 
to be diffusive and to be dominated by long-range "guiding center" collisions. In these 
long-range collisions, which occur in plasmas with AD > rc, particles with impact 
parameters rc < p < XD exchange parallel kinetic energy only. The resulting thermal 
diffusivity Xh is independent of plasma density n and magnetic field B. We measure a 
thermal diffusivity x which agrees within a factor of 2 with the long-range prediction 
XL — 0.49 nvb2\2

D over a range of 103 in temperature, 50 in density, and 4 in magnetic 
field. This thermal diffusivity is observed to be up to 100 times larger than the classical 
diffusivity. These long-range collisions are typically dominant in unneutralized plasmas, 
and may also contribute to electron heat transport in neutral plasmas. 

INTRODUCTION 

The study of cross-magnetic-field heat transport in plasmas is an area of active 
research relevant to magnetic fusion plasmas [1], astrophysical objects [2], plasma 
processing [3], and basic plasma physics [4]. Heat transport can be broadly catego- 
rized as collisional or turbulent. "Collisional" transport is driven by the fluctuating 
fields from thermal motions of individual particles, whereas "turbulent" transport 
is driven by non-thermal fluctuations such as unstable waves or broadband turbu- 

lence. 
Collisional transport can occur as a result of direct (binary) Coulomb collisions 

and as a result of wave-mediated (multiple-particle) collisions. Direct Coulomb 
collisions between particles can occur over distances up to a Debye shielding length 
AD, while wave-mediated collisions can occur over distances as large as the plasma 
dimensions. In a direct Coulomb collision, the character of the collision depends on 
the impact parameter p compared to the cyclotron radius rc; here, we distinguish 
between "short-range" collisions, with impact parameters p < rc and "long-range" 
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collisions, with impact parameters rc < p < XD. Short-range collisions occur in all 
plasmas, while long-range collisions occur only in plasmas with rc < Xo- 

"Classical" transport theory analyzes short-range collisions with p < rc. These 
collisions cause scattering between the perpendicular and parallel velocities and 
thus drive the perpendicular and parallel velocity distributions toward a Maxwellian 
with a single temperature T. For ion-ion collisions, the (momentum transfer) col- 
lision rate [5] resulting from short-range collisions is 

vn = —\pKnvb2 ln(-^) (1) 
15 o 

« (l.Os-^T-^nr [1 + 0.08 \n(T3/2B~1)} , 

where b = e2/T = (0.14 pm)T~x is the distance of closest approach. Here, the 
numerical values are appropriate to 24Mg+ ions, with density v7 = ??/10'cm~'\ 
magnetic field B in Tesla and temperature T in eV. Eq. (1) uses the form of the 
Coulomb logarithm appropriate for plasmas with rc < Xo [6], where »•,. = r/H, « 
(0.5mm)T1/2ß-1 and XD = [TlAnehi}1'2 tu (2.4mm)T1/2iv1/2 . These collisions 
cause a random cross-field step of the ion guiding centers by a distance of order 
rc, causing cross-field diffusion of particles, momentum, and heat. The resulting 
classical thermal diffusivity \c is given [7] by 

Xc = vnr\ (2) 

« (2.5 x lO^cmV1) T~1/2B~2n7 [I + 0.08 liifT^ß-1)] • 

Long-range transport occurs as a result of collisions with impact parameters 
rc < p < AD- In these long-range collisions, the ions exchange parallel energies 
over radial distances p. The interaction time is long compared with the cyclotron 
motion of the particles, so the cyclotron action px. = mv2

±/2B of each particle is 
conserved and there is no significant change in the perpendicular velocities. There 
is also a small E X B drift due to these collisions; this produces negligible heat 
transport, but is important for particle and angular momentum transport [8]. 

The cross-field thermal diffusivity \L resulting from long-range collisions is cal- 
culated [9] to be 

Xi = 0.49mU2AD (:i) 

«(l.ixio-Ws-'jr1'2. 

This long-range thermal diffusivity \L results from pairs of particles with small 
relative parallel velocity; particles with large relative velocities do not significantly 
exchange parallel energy in these 1-D collisions. Any given particle will interact 
with other particles with relative velocity Av K (b/Xp)v; and the effective density 
of these other particles is An ~ (b/XD)n, so the resulting thermal diffusivity is 
XL — AnAvX2

DX
2

D ~ nvb2X2
D. Comparing Eqs. (2) and (3) suggests that long-range 

collisional heat transport will be larger than short-range collisional heat transport 
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in plasmas with XD > 7 rc. Single species plasmas are commonly in this regime clue 
to the Brillouin density limit [10], and the electrons in some neutral plasmas are in 
this regime, i.e. AD > 7rce. 

Wave-mediated heat transport is predicted to occur as the result of the thermal 
emission and absorption of lightly damped plasma waves over distances p > \D- 
In collisionless plasmas, the resulting thermal diffusivity is expected to scale as [11] 

Xw oc nvtfXoLr , (4) 

where LT is the cross-magnetic-field scale length of the thermal gradient. The effect 
of wave-mediated heat transport is thus expected to become dominant in plasmas 
with very large thermal gradient length scales, i.e. LT > AD,rc. For collisionless 
plasmas, for example, it is estimated that the wave-mediated thermal diffusivity 
of Eq. (4) will become larger than the long-range collisional thermal diffusivity of 
Eq. (3) if LT^IOOAD [9]. 

Thus, we expect a cross-field heat flux Tq given by 

T, - -\n (xiVT|| + XcVT) + TND , (5) 

where the term TMD represents a possible heat flux due to non-diffusive effects such 
as waves or convection. In Eq. (5), we have separately identified T\\ to emphasize 
the unusual nature of XL, but for most of our experiments we have T± ~ Tj| = T. 

Here, we measure collisional heat transport in a quiescent pure ion plasma [12]. 
These plasmas can be confined in a near-thermal equilibrium state where fluctu- 
ation levels are small and transport is dominated by collisions, rather than by 
turbulence. The measurements are made on uncorrelated magnesium-ion (Mg+) 
plasma columns with temperatures 5 x 10~4 < T < 0.5 eV, densities 0.2 < n7 < 10, 
and magnetic fields 1 < B < 4Tesla. The measurements show that the cross- 
magnetic-field heat flux in these plasmas is diffusive, i.e. TND — 0, with average 
thermal diffusivity x ~ 1-7 Xz. ^ Xc- These measurements are consistent with the- 
ory predictions to within the present accuracy of the data. It is not known whether 
the factor of 1.7 difference is significant. Here, the thermal diffusivity is expected 
to be dominated by long-range collisions, since fluctuation levels in these plasmas 
are very small and we typically have AD > rc. Wave-mediated heat transport is 
not predicted to be significant in the present experiments, since Ly < 100 AD. 

EXPERIMENTAL SETUP 

The experimental setup used is shown schematically in Fig. 1. Magnesium ions 
are created with a metal vacuum vapor arc (MEVVA) [13] and are trapped in a 
Penning-Malmberg trap with uniform axial magnetic field B and end-confinement 
potentials Vc — 200 V. Typically, Ntot «5x 108 ions form a plasma column of 
length Lp PS 14 cm and radius i?p ra 0.5 cm inside conducting cylinders with radius 
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Figure 1. Ion trap schematic showing manipulating beam and probe beam geome- 
tries. 

Rw = 2.86 cm. These plasmas consist of about 70% Mg+, with the remainder being 
mostly magnesium hydrides, MgH+, formed when ions interact with the residual 
neutral background gas (H2) at pressure P K 4 x 10~9 Torr. 

The radial electric field due to the unneutralized ion charge causes the plasma, 
column to E x B drift rotate at a (central) frequency of /E = nec/B ~ 
(14.4kHz)rnB~x. Diamagnetic and centrifugal drifts are small, so the total fluid 
rotation frequency is /ro< ~ /#. This rotation is rapid compared to the heat 
transport times discussed here, so our radial transport measurements are effec- 
tively azimuthally-averaged. Individual thermal ions bounce axially at a rate 
/;, = v/2Lp « (7.1kHz)T1/'2(Z/p/14cm)_1, so we also assume the plasma to be 
uniform along the magnetic field lines. 

These ion plasmas normally expand radially on a time scale of rm ~ 2000 sec 
due to azimuthal asymmetries in confining fields. Here, however, the ions are held 
in near-thermal-equilibrium steady-state for days or weeks through application of 
a weak "rotating wall" potential perturbation [14]. The heating due to the slow 
plasma expansion (Joule heating) or due to the rotating wall drive is balanced by 
cooling from collisions with the background neutral gas, and the plasma typically 
relaxes to an equilibrium at T ~ 0.05 eV. Usually, the rotating drive is turned off 
during the heat transport experiments; however, we find that the results obtained 
for the thermal diffusivity are the same with the rotating wall on or off. 

The plasma is diagnosed by using laser-induced fluorescence (LIF) from a weak 
(~ lO^W) continuous 280 nm laser probe beam to nonperturbatively measure 
the plasma density, temperature, and fluid rotation velocity. Typically, the probe 
beam frequency is scanned through a 32S\/2 ->• 32P3/2 cyclic transition of 24Mg+ 
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Figure 2. (a) Measured Mg+ density nMg, temperature T, and inferred total charge 
density n as a function of radius r. (b) Measured total fluid rotation vtot and 
calculated diamagnetic rotation velocity vaa. 

at each radial position; from the measured ion distribution functions, f±(v±,,r,t) 
or /||(u||, r,t), we obtain the local magnesium density nus{r), temperatures T±(r,t) 
and T[\(r,t), and total fluid rotation velocity vtot(r). In the heat transport experi- 
ments, the rapid temperature evolution is generally obtained from just the velocity 
distribution peaks, that is, f\\(0,r,t) or fi.{vtoUr,t) , since the ion density is con- 
stant on the time scales of the measurements. As indicated in Fig. 1, the probe 
beam can be aligned parallel or perpendicular to the magnetic field, so that both 
T± and Tj| are measured; for the experiments presented here, however, we can ap- 
proximate Tj_ ~ T|| = T to adequate accuracy. The total charge density n(r) is 
calculated as that required to give frot{r) - vtot{r)/2T:r. Typically, we find that 
"MgM/n(r) « 0.7 at all radii, so centrifugal mass separation [15] is negligible. 

A typical equilibrium plasma is shown in Fig. 2. Here, we display UMS, T, and vtot 
measured as a function of radius for plasma that has been held in steady-state for 
20 hours by a rotating wall drive [14]. Also shown is the total charge density n and 
diamagnetic velocity v<na calculated from the measured riMg(r), T(r), and vtot(r)- 
These steady-state plasmas are typically confined close to thermal equilibrium, i.e. 
n, T, and frot are relatively constant over the bulk of the plasma. 

A temperature gradient is created in the plasma by locally heating or cooling 
with a strong (~ 1 mW) manipulating beam. This heating or cooling is obtained 
by detuning the parallel manipulating beam to the blue or red side of the cyclic 
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Figure 3. Measured thermal diffusion starting from locally (r = 0) cooled initial 
condition. 

transition. The manipulating beam is aligned along the r = 0 axis of the plasma, 
thus creating an initial condition with a strong radial temperature gradient. The 
manipulating beam is chopped and the plasma temperature and density are mea- 
sured using the probe beam during times when the manipulating beam is off. 

RESULTS 

Heat transport experiments are performed by creating steady-state plasmas with 
a strong temperature gradient, then blocking the manipulating beam and measuring 
the resulting temperature evolution. Figure 3 shows such an evolution. At t — 0, 
the cooling beam is turned off, and the central plasma temperature is observed 
to rise from T fa 3 x 10~3 eV at t = 0 toward the equilibrium temperature of 
T ~ .05 eV. For clarity, only t = 0, 0.1, and 1 sec and the approximate final 
equilibrium state t —>■ co are shown; actually, the temperature evolution is measured 
with 100 time steps over 0 < t < 4 sec for each radial position. 

The temperature evolution of Fig. 3 results from a radial heat flux plus small 
external heating terms. The radial heat flux T, is obtained from the measured 
change in local energy density, q(r, t) = JU|rc(r) T(r, t)] as 

Vq(r,t) = --   r r'dr'[q(r',t)-qcxt(r',t)} 
r Jo (6) 

where the weak external heating or cooling term qext is known from independent 
measurements, as described below. 
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Figure 4. Measured normalized heat flux vs. temperature gradient for experiment 
shown in Fig. 3, demonstrating diffusive heat transport. 

In Fig. 4, we plot the measured radial heat flux Tq as a function of the tempera- 
ture gradient VT obtained from the data of Fig. 3. We plot the heat flux measured 
at radii r = 0.1, 0.15, and 0.2 cm, and at times t = 0.1 to 1.9 sec. These radii were 
chosen here because they have a strong gradient and a strong signal, i.e. q > qexi. 
It can be seen that the gradients and fluxes are largest at early times, and decrease 
as the temperature profile relaxes toward equilibrium. Since both classical and 
long-range transport predict Tq <x x^T <x T~1/2VT, the displayed Yq is divided 
by T~x>2 to better illustrate the proportionality with VT. 

The error bars shown in Fig. 4 are estimates of the random error based on the 
level of scatter in the LIF signal; the error shown here is typical of all the data, points 
in Fig. 4. The dashed line in Fig. 4 is an unconstrained, error-weighted linear fit 
to the data; it can be seen that a straight-line fit is a reasonable description of the 
measurements. Also, from the intercept of the line, it can be seen that Y^D — 0 
within the scatter in the data; thus Fig. 4 demonstrates diffusive heat conduction. 
In general, our measurements show no consistent signature of non-diffusive heat 
flux. 

We calculate the local thermal diffusivity \ at any chosen radius and time as 

X = - 5n VT 
;7) 

The diffusivity x depends on the local plasma density and temperature, as well as 
on the magnetic field. Values of x(n, S,T) were obtained for different equilibrium 
plasmas covering a range of 50 in density, 103 in temperature, and 4 in magnetic 
field.   In Fig. 5, we plot the measured x as a function of temperature T.   The 
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Figure 5. Measured cross-magnetic-field thermal diffusivity x plotted as a function 
of temperature T, demonstrating heat transport dominated by long-range collisions. 

dashed curves in Fig. 5 show the predicted classical thermal diffusivities \£. for 
the 5 densities and magnetic fields used. The solid line shows the predicted long- 
range thermal diffusivity \L, which depends only on temperature. The data points 
of Fig. 5 labeled "small ST" correspond to plasmas which are slightly perturbed 
away from a known uniformly heated or cooled equilibrium plasma. These small 
perturbation measurements are taken at densities 0.5 < n- < 2.5 and magnetic 
fields 1 < B < 4 T. 

The measured thermal diffusivities are up to 100 times larger than the classical 
prediction, and are independent of B and n. The T~ll2 scaling is observed over 3 
decades in T, and extends into the low-temperature regime where rc m b. A fit to 
the data with x oc T~1/2 gives x = (1.93±1) x 10~3 cmV1 T~i!2 = (0M±Jj)>;\}) 

BACKGROUND HEATING TERMS 

The small external heating correction, qexU used in Eq. (6) is obtained by mea- 
suring the temperature evolution of a plasma which has been uniformly heated or 
cooled by a wide manipulating beam. The measurements are qualitatively consis- 
tent with a model that includes the Joule heating expected from the slow radial 
plasma expansion, and the heating or cooling expected from ion-neutral collisions. 

For the heat transport data presented here, the correction to \ due to the external 
heating terms is small, since qext/q ^ 0.1 in the regions with a large temperature 
gradient. 
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DISCUSSION 

The cross-magnetic-field heat flux in a quiescent pure ion plasma is observed to 
be proportional to the thermal gradient VT, and dominated by long-range collisions 
with impact parameter up to a Debye length. These long-range collisions cause heat 
fluxes which are independent of magnetic field strength and plasma density: the 
observed thermal diffusivity scales as x oc n°B°T~lf2, whereas classical diffusivity is 
Xc oc nB~2T~1/2. At high magnetic field and low densities, the classical prediction 
is more than two orders of magnitude too small to explain the observed heat fluxes. 
This enhanced heat transport should occur in many nonneutral plasmas, where 
AD > rc is always satisfied, and may apply to the electron component of neutral 
plasmas which satisfy AD ~ 7rce. 

Presumably, classical heat transport is also occuring in these systems; we do not 
observe this directly, however, since XL 3> Xc f°r most of our parameter range. 
Direct measurements of the equipartition rate i/j_\\ = \vu between perpendicular 
and parallel temperatures Tj. and Ty in these plasmas have been performed, however 
[16]; these measurements verify that short-range velocity-scattering collisions are 
occuring as expected, that is, we measure values of Vu in agreement with Eq. (1). 

Wave-mediated heat transport is not believed to be significant here, since 
these plasmas are many, but not thousands, of Debye lengths across; the lowest- 
temperature data presented here (T~5x 10~4 eV), corresponds to plasmas about 
100 Debye lengths across. Future experiments will attempt measure wave-mediated 
heat transport in these plasmas. 
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Abstract. Cross-field collisional diffusion of test particles is discussed for a non-neutral plasma 
column in the 2D E x B regime, where the diffusion is due to the E x B drift of charged rods 
(bounced-averaged charges) in the random Coulomb fields of the other rods. If the overall flow has 
a finite E x B velocity shear the diffusion is found to be considerably smaller than previous calcu- 
lations, which are shown to hold only for a nearly shear-free plasma. Preliminary simulations 
showing the effect of shear on the particle diffusion are in qualitative agreement with the theory . 

INTRODUCTION 

This paper considers cross-magnetic field diffusion of test particles in a non-neutral 
plasma confined in a Penning-Malmberg trap. The diffusion is evaluated for plasmas 
in the 2D E x B regime, where the axial bounce frequency of individual charges be- 
tween the ends of the trap is large compared to both the collision frequency vc and the 
characteristic rate for cross-field dynamics. This characteristic rate is typically on the 
order of the shear rate r d(i)(r)/dr in the plasma's E x B rotation frequency (o(r). In this 
regime the axial dynamics can presumably be bounce-averaged, and the charges are 
then treated as 2D charged rods that E x B drift in the fields of the other rods. 

Previous theory and experiments on test particle diffusion in non-neutral plasmas was 
carried out for plasmas that were not in the 2D E x B regime. For such 'floppy' plas- 
mas axial dynamics is important and the diffusion coefficient D has the classical scal- 
ing, D ~ vc Yc, where rc is the cyclotron radius [1,2]. Note that this diffusion decreases 
with increasing magnetic field strength as MB . 

Diffusion of 2D charged rods across a magnetic field has been considered previously 
by several authors. One reason for the early interest in this problem was that neutral 
plasma experiments often observed anomalously large diffusion coefficients with 
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Böhm scaling, D°^\l B, rather than the classical scaling D °= 1 / B2. The 2D model 
for cross-field diffusion was invoked as one possible explanation for this scaling, since 
one can easily show that 2D E x B drift dynamics implies that all time scales (includ- 
ing the diffusive timescale) increase linearly with magnetic field strength. 

Taylor and McNamara [3] and Dawson and Okuda [4] considered collisional diffusion 
in a uniform homogeneous neutral plasma of charged rods as the simplest possible ver- 
sion of such 2D transport. Interestingly, the diffusion was thought to depend on 
whether the rods were distributed randomly or whether they were given time to equili- 
brate and Debye-shield one-another. For the case of random uncorrelated rod posi- 
tions in a square box with periodic boundary conditions, the diffusion coefficient was 
calculated to be [3] 

D™={\.9/TZ)mqcNmIB, (1) 

where q is the charge per unit length on each rod, and TV is the number of rods. The re- 
sult depends on the boundary conditions, since the diffusion is due to large scale 
'Taylor vortices', which are E x B fluctuations with wavelengths on the order of the 
system size [4]. However, non-neutral plasmas in a Penning trap are not in periodic 
boundary conditions, and more importantly they often have large-scale equilibrium E 
x B shear flows. These flows might be expected to disrupt the Taylor vortices and 
thereby reduce the diffusion. 

In this paper we show that the diffusion coefficient is in fact reduced when the plasma 
is sheared, and we also show that the level of shear required for Eq. (1) to be valid is 
quite small: 

rdcoldr<   a> I\[N. (2) 

There has been considerable recent interest in the effect of large-scale E x B shear on 
the cross-field transport in neutral plasmas. Such plasmas are turbulent with fluctua- 
tion levels much larger than those considered here. Nevertheless, our results showing 
the reduction of collisional diffusion in the presence of shear might be thought of as 
the simplest possible paradigm for this phenomenon, just as the original shear-free 
case was put forward as a simplified model of homogeneous plasma turbulence. 

2D E xB DIFFUSION OF RODS IN THE PRESENCE OF SHEAR 

Consider a cylindrically-symmetric non-neutral plasma consisting of a collection of 
N+l identical charged rods of infinite length, with charge q per unit length, immersed 
in a uniform magnetic field. The plasma rotates due to the E x B drift of the rods, with 
a mean-field rotation frequency (a(r). 
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Consider a rod initially located at radial position r. The rod feels the fluctuating elec- 
tric fields due to the other rods in the plasma and diffuses radially according to [5] 

D = ]dt<Svr(t)Svr(0)>, (3) 
o 

where the radial velocity fluctuation is given by the E x B drift as 

8vr = c8Ee IB, 

and the electric field is determined by the other m=l,2, ...,,/Vrods: 

r dv m=I ;=_ 

Here, (j> / is the Greens function for the Coulomb potential, Fourier-transformed in the 
8 coordinate. 

The velocity correlation function is then evaluated using the standard method of inte- 
gration along unperturbed orbits, in which each particle is assumed to merely rotate 
about the center of the plasma in the cylindrically-symmetric shear flow co( r): 

r
m(t) = ro= const,   0m W = 0O + ®W- 

Then assuming that the initial conditions for the rods are uncorrelated the statistical 
average can be evaluated, yielding 

ß=-(?TW0*J*2^-^ (4) 
^ " ' o      i.i r 

where w20 is the 2D density of rods (in units of cm"2). The 60 integral implies that only 
/ = -/ need be kept in the sum, and the time integral yields a 8 function: 

D =^j Jr0dr0n^2n2L| ^{r,r0)I28[l((0(r)-0)(ro))]. 

The 8 function means that only resonant particles cause appreciable transport, since 
resonant particles interact for long times and take large drift steps. For a monotonic 
rotation frequency profile, the 8 function implies that r=r0 , and evaluation of the re- 
maining r0 integral then yields 
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ßj  \rd(0E/dr\       ,±L\1\ 

where we have assumed an unshielded Coulomb interaction between the rods and ne- 
glected image charges in the walls, so that <j>,(r,r) --Ml. 

Note that Eq. (5) displays a logarithmic divergence at large wavenumbers, since close 
collisions between rods cause large E x B drifts. The divergence can be cut off by 
physical mechanisms that impose an effective maximum possible wavenumber in the 
sum, lmax. There are several possibilities: 
1) Guiding center dynamics becomes invalid for length scales smaller than the cyclo- 
tron radius, implying lmca~r/rc. 
2) Rods that are initially close to one another will orbit one-another rather than drift 
apart, provided that they are within a trapping distance of order -Jcq I (Brdoo I dr), 

implying Zmax ~ ^J(Br3d(01 dr) I (cq) 
3) In simulations of the diffusion to be presented later, the electric field is evaluated on 
a grid keeping wavenumbers only up to /max roughly of order 500 r/rwan. 

To logarithmic accuracy the diffusion coefficient is then 

D = 47t2(^-)       "" n   ln(/max). (6) 
KBJ \rdcoldr\      max 

Note that as the shear rate increases, the diffusion coefficient decreases, as one would 
expect intuitively. However, Eq. (6) clearly breaks down when the shear is so small 
that the diffusion given by Eq. (6) is larger than the Taylor-McNamara result for a 
shear free plasma, Eq (1). Comparing Eq. (1) to Eq. (6), D™ < D when 

VL9 BN]n        VT9    Vnm'N,/2Qr, 

which is equivalent to Eq. (2) aside from a numerical factor. When this inequality is 
satisfied, the plasma is effectively shear-free and the Taylor-McNamara result applies. 
However, for large TV the shear rate must be extremely small in order to satisfy this 
inequality. This can be easily understood: the shear in the equilibrium flow must be 
smaller than the shears created by fluctuations in order for the Taylor-McNamara re- 
sult to apply, and the shears created by fluctuations arising from discreteness are of 
order a/N1'2. 
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SIMULATIONS 

We have carried out particle in cell simulations of the diffusion of rods in a sheared 
non-neutral plasma column. In this preliminary work, N rods were placed randomly so 
as to produce an overall mean density profile of form 

n2D(r) = Ar-^a+l> ,   0.05 rwaIl < r < 0.4 rmiU. (7) 

This profile was chosen so that 

rdcol dr 
= const = 

Ba 
4nqc 

(8) 

The parameter a characterizes the amount of shear in the plasma: as a increases the 
shear decreases. 

Simulations were performed on a 512 by 512 square grid, for JV varying from 5000 to 
100,000 rods, and values of a varying from 0.1 to 100. In order to measure the diffu- 
sion coefficient, rods in the range 0.2 < r /rwaii < 0.3 were followed, and their change in 
radial position, Sr(t) = r(t) - r(0), was evaluated. Here t = 0 corresponds to an arbitary 
initial time, taken to be approximately one rotation period after the simulation was be- 
gun. An average over the rods was then carried out to obtain < Sr(t)2 >, the mean 
square change in radial position of the rods. 

0.01 
N= =100,000, oc=5              v^* 

yj^ 

A-, 
^ 0.005 

n 

y^2Dt 

10 15 20 
t in units of (B r^, /cQ) 

FIGURE 1. Mean square change in position of rods in a non-neutral plasma simulation, meas- 
ured in terms of rwa!i. The number of rods is N= 100,000 and the shear parameter is a=5. 
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For diffusive motion, this function should increase with time like        2Dt. A plot of 
<ör(tf >is shown in Fig. 1. As expected, after an autocorrelation time the mean 
square change in position does increase roughly linearly with time. It begins to saturate 
at late times because the rods start to explore the entire plasma (which has radius 0.4 
rwan). The slope of the straight line portion of the curve is taken to be 2D. 

In Fig. 2, the result for D is displayed from 4 simulations with a=l. Here D is meas- 

ured in units of c Q/B where Q is the total charge per unit length in the plasma. In 
these units, Eq.'s (1) and (6) can be written as 

~       cc. cQ 
D = 7f—ln(/    )—, 

N B 
(9a) 

D™=  \i-9cQ (9b) 

The N dependence of the 2 theories differs. Fig (2) displays Eq.s (9a) and (9b) as 
dashed and solid lines respectively. In Eq. (9a) have taken ln(/max) = 2.7, which gives 
the best fit to the data and is a not-unreasonable value given the 0(7) uncertainties in- 
herent in the logarithmic approximation used to derive Eq. (9a) and in the precise 
value of /raax to be used in the theory. The scaling with N of the simulation results 
agrees well with Eq. (9a) and disagrees with Eq. (9b), showing that the diffusion is 
sharply reduced by the presence of shear, in agreement with our calculation. 

€9 a 
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a = l 

~ ~__D™ - 

:     ^^JEg(9a) 

>^ 

i 

( 

104 N 105 

FIGURE 2. Measured diffusion coefficient (dots) versus number of rods in the simulation, for 
shear parameter a = 1. Also shown as the solid line is the Taylor-McNamara theory, Eq. (9b). 
Our theory with shear, Eq. (9a), is shown as the dashed line, taking In (/max) = 2.7. 
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In Fig. 3 we vary the shear parameter a for 2 values of N. Since the diffusion rate ap- 

pears to depend inversely on N for Q fixed and a ~1, we plot N D to remove the N de- 
pendence. As expected from our calculation, the diffusion increases as the shear de- 
creases until the Taylor-McNamara level is approached. Note that one would not nec- 
essarily expect the exact Taylor McNamara result in the limit of no shear (i.e. a -> °°), 
since Eq. (9b) was derived for periodic boundary conditions and the simulation was 
carried out for a cylindrical plasma. This may explain the discrepancy between Eq. 
(9b) and the simulation results in the small shear regime. 
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FIGURE 3. As shear decreases (i.e. as a increases), the diffusion increases in agreement with 
Eq. (9a) (the dashed line), until the shear becomes small. Again we take ln(/max) = 2.7. The 
Taylor-McNamara theory (Eq. (9b)) for the 2 values of N shown is displayed as the solid lines. 

CONCLUSIONS 

We have evaluated the test particle diffusion coefficient for a collection of charged 
rods undergoing E x B drift dynamics in a cylindrically-symmetric shear flow. The 
theoretical calculation was compared to particle-in-cell simulations of the diffusion, 
showing reasonably good agreement with our theory . The diffusion was found to be 
greatly reduced by the presence of shear in the equilibrium plasma when compared to 
the Taylor-McNamara/Dawson-Okuda theory [3,4], which was shown to hold only for 
a nearly shear free plasma. 
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The theory should apply to a non-neutral plasma column confined in the 2D E xB re- 
gime, for which the bounce frequency is sufficiently large that the plasma particles can 
be bounce-averaged and treated as rods. Thus, the diffusion may be measured experi- 
mentally in the future, perhaps using the laser-tagging techniques employed in previ- 
ous experiments [1] on pure ion plasmas. 

The theory may also be thought of as a simplified model for the effect of shear on 
cross-field diffusion in a turbulent neutral plasma. As such, it may provide some useful 
intuition for the study anomalous transport in the presence of large E x B shear. 
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Experimental Test of the Resonant 
Particle Theory of Asymmetry-Induced 

Transport 

D.L. Eggleston 

Occidental College, Physics Department, Los Angeles, CA   90041 

Abstract. While it is easy to experimentally demonstrate that applied field asymme- 
tries produce radial transport, convincing comparisons of experiment and theory have 
yet to be made. A key prediction of the theory is that the transport will be dominated 
by particles that move in resonance with the asymmetry. For the general case of a 
time-varying asymmetry, the resonance condition is CJ — IL>R — kv = 0, where v is the 
axial velocity, UR is the E x B rotation frequency, and ui, I and k are the asymmetry 
frequency, azimuthal and axial wavenumbers, respectively. We present experiments 
on our low density trap in which w, WR, and k are varied and the resulting radial 
particle flux is measured. The experiments show a resonance in the flux similar to 
that predicted by theory. The peak frequency of this resonance increases with UR and 
k, but not in the way theory predicts. The peak magnitude of the measured trans- 
port is roughly forty times smaller than the theoretical prediction, and low-frequency 
asymmetries are especially ineffective at producing transport. 

INTRODUCTION 

Plasma traps of the Malmberg-Penning type have been found to be useful in a 
variety of fields including basic plasma physics, atomic spectroscopy, anti-matter 
physics, and mass spectroscopy. Early studies of the confinement time of such 
traps found good agreement between experiments [1] and a transport theory [2] 
based on collisions with neutrals. However, at the lowest neutral pressures the 
confinement time was much lower than expected [3] and decreased with machine 
length [4]. It was suggested that this anomalous transport was due to the presence 
of electric or magnetic fields that break the cylindrical symmetry of the trap. The 
presence of such asymmetries would produce a radial component to the E x B 
drift that would lead to particle loss. This notion was later supported by further 
confinement studies [5] as well as experiments with applied asymmetries [6-8]. 

These early papers also suggested that the asymmetry-induced transport might 
be described by a theoretical model developed in early studies of radial transport 
in tandem mirrors [9-13] where static asymmetric end cells produced radial grad- 
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B drifts that, largely determined the radial particle flux. A key prediction of the 
theory is that the resulting transport will be dominated by particles whose axial 
bounce motion and azimuthal drift motion causes them to move in resonance with 
the asymmetry. As these resonant particles repeatedly encounter the asymmetry 
they take radial steps in the same direction, thus allowing them to diffuse more 
quickly than non-resonant particles. 

We have recently adapted this theory to Malmberg-Penning traps [14] and in this 
paper present our first attempts to test the theory using an experimental device 
specifically designed for the task. While the experiments provide evidence for 
the dominance of resonant particles they also contradict other predictions of the 
theory. 

ASYMMETRY-INDUCED TRANSPORT THEORY 

The geometry of the non-neutral experiments is cylindrical with an axial mag- 
netic field B. The magnetic field is typically strong enough that the Larmor radius 
is much smaller than any other scale length in the plasma and all relevant frequen- 
cies are small compared to the cyclotron frequency. Asymmetric electric fields are 
applied by placing voltages on wall sectors. Under these conditions the basic equa- 
tions for a non-neutral plasma are Poisson's equation, the drift kinetic equation with 
a collision operator, and the boundary conditions on the conducting walls. For sim- 
plicity we take as our model a plasma of length L with flat ends, thus ignoring end 
effects. This allows us to linearize the potential as <f>(r, 6, z, t) = (j>o(r) + <j>\{r, 6, z, t) 
where 

0! (r, 0, z,t)=J2 4>mM ■ exp {if^-z + W- wt) J (1) 

and similarly for the distribution function /. For an electron plasma (q — —e) 
Poisson's equation then becomes 

ld_   d__l_ 
r dr  dr     r2 

cl  dfo    nir e dfo 

T)    ^(r) -**ji.'»;+J->^) (2) 

where UR is the azimuthal E x B rotation frequency of the plasma column, </>niw(r) 
is the Fourier amplitude of the asymmetry mode characterized by axial mode n, 
azimuthal mode I, and frequency w, and the integral is over the axial velocity v. 

The form of the resulting radial particle flux depends on the   relative size of 
an effective collision frequency vejf and the oscillation frequency uT of particles 

trapped in the asymmetry potential, where v^ff « vee \*jf)   and 

2      Je  /nn\2     cl  dwn 
UT = \m\LJ   ~7B~dT 

4>nlw (3) 
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When veff » UJT, frequent collisions interrupt the trapped particle orbits and 
the basic radial step is the radial drift velocity times the time between collisions. 
Deviations from unperturbed orbits are small and a perturbation approach is ap- 
propriate. This is called the resonant plateau regime. When vejf <CüT, a trapped 
particle can complete at least one oscillation before a collision knocks it out of res- 
onance. Now the basic radial step is the radial extent of the drift during a trapping 
oscillation and the orbits are fully nonlinear. A heuristic derivation of the resulting 
radial flux is often employed for this so-called banana regime. The resulting radial 
particle flux for the plateau regime is given by (See reference [14] for details) 

-plateau-        Z^/^2 1 
n.Liv \\FMV

1 

cl<f)nluJ 

rB 

2 r 1 dnn       r-nKTWc 
 J- + V2—-^a; 
no dr L  Iv 

(4) 

and for the banana regime by 

■ banana- E 
n.l.uf 

n0 \717T / 

,_\2 

(£) W 
1/2 

2TT [\ - (lLY 1 du'R\ 
I \7i7r /    rule   dr   j 

1 dno       f-mrrojc 
no dr L  Iv (5) 

For simplicity we have assumed here that the temperature T is constant with 
radius. The variable x is equal to vres/\/2v, where vTes = ^(u — IWR) is the 
resonant velocity for the asymmetry mode n,l,uj. The symbols v, u>c, and i/ee are 
the thermal velocity, the cyclotron frequency, and the electron-electron collision 
frequency, repectively. 

It is worth noting several features of these solutions. Both plateau and banana 
regime fluxes involve a sum over all the asymmetry modes produced by the wall 
voltages. The square brackets contain a diffusive term ^^ and a generalized 

mobility \p2?fr-^x (note that this latter term reduces to eE/kT for u = 0). The 
plateau regime flux is independent of the collision frequency and is proportional to 
the square of the asymmetry amplitude, whereas the banana regime flux depends 
linearly on vee and scales like $)•£. The dominance of the flux by resonant par- 
ticles is reflected in the e~x2 factor which stems from evaluating the Maxwellian 
distribution function at the resonant velocity. Note that x can be positive or neg- 
ative as CJ is greater than or less than WR. Thus, while static field asymmetries 
(u> = 0,x < 0) move electrons radially outward (r > 0), an appropriately chosen 
asymmetry (u > UJR, X > 0) can move particles radially inward as is observed in 
"rotating wall" experiments [6,8]. Here we use the convention that u > 0 corre- 
sponds to an asymmetry that rotates with the plasma column and w < 0 to one 
that rotates against the column. 

The presence of a; in the variable x provides the experimentalist with an ideal way 
of testing the notion that resonant particles dominate the transport. By varying u> 
one can obtain any value of the resonant velocity vres and the resulting flux should 
exhibit a resonance as vres sweeps through the distribution function.  However this 
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FIGURE 1. Computed variations of the normalized Ee at the plama center versus asymmetry 

frequency w. The three curves correspond to three plasma temperatures. The strong variations in 

Eg are produced by plasma collective effects and make it difficult to observe the resonant particle 

dominance of the radial transport. 

approach is complicated by the strong w-dependence of the asymmetry potential 
4>niu- Figure 1 shows numerical solutions of Equation (2) for typical plasma para- 
meters [14]. We plot Eg = lcj)niu/r at the center of the plasma (normalized to its 
value at the wall) as a function of asymmetry frequency u. Note that Eg varies by 
many orders of magnitude as adjustments of to produce plasma phenomena ranging 
from standing waves (the peaks of the curves) to Debye shielding (the strong dip 
around ui = U>R) . These variations in Eg (and thus in the flux T) tend to dominate 
or mask those produced by resonant particle effects. This produces, for example, 
enhanced transport when the asymmetry is at a standing wave frequency of the 
plasma column [6]. Nonlinear collective processes are also possible [15]. These col- 
lective effects, although interesting, are not, in our view, essential to the transport 
physics. We note, then, that the variations in Eg are reduced as the temperature 
is increased and/or the density is reduced (see reference [14]). 

These considerations led us to the modified trap design shown in Figure 2. The 
plasma is replaced by a biased wire running along the axis of the trap. Electrons 
injected into this device have the same dynamical motions as those in a normal non- 
neutral plasma (i.e. axial bounce and azimuthal drift motions), but the collective 
variations of 0n;w are eliminated since the lower density (105 cm~3) and higher 
temperature (4 eV) of the electrons give a Debye length larger than the trap radius. 
Despite these changes, the confinement time scaling with no applied asymmetries 
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FIGURE 2. Schematic of the Occidental Trap. The plasma is replaced by a biased wire that 
maintains the basic dynamical motions of the injected electrons. Forty wall sectors allow for the 
application of asymmetries consisting of essentially one Fourier mode. 

[16] shows the same {L/B)2 dependence found in higher density experiments [4], 
thus supporting the notion that the transport is a single particle effect. 

For the current experiments, up to forty wall sectors are employed to produce 
an asymmetry consisting of a single Fourier mode, thus eliminating the sum over 
n, I, and w in the flux and making for a simpler comparison between theory and 
experiment. Electrons injected into the trap are quickly dispersed into an annular 
distribution [17]. At the end of an experimental cycle the electrons are dumped 
onto a phosphor screen and the resulting image is digitized. A radial cut through 
this image gives the density profile of the electrons. Profiles are taken both with 
the asymmetry on and off, and the change in density 6n(r) is either used directly 
to approximate dn/dt or integrated to give the radial particle flux T(r). 

EXPERIMENTAL RESULTS 

Our initial data addresses three aspects of the theory: 1) the scaling of transport 
with asymmetry amplitude, 2) the dominance of the transport by resonant particles 
and 3) the absolute magnitude of the transport flux. Figure 3 shows the scaling 
of dn/dt with the amplitude of the asymmetric potential applied to the wall. The 
scaling is consistent with plateau regime theory (i.e. <f>2) when the amplitude is 
small and falls off to roughly 04/3 at higher amplitudes. The banana regime 
scaling of <j)1/2 is not observed. 

Figure 4 shows the radial flux vs. asymmetry frequency at three radial positions. 
The radial density profile is shown in the inset. The data is qualitatively consistent 
with resonant particle theory. When the density gradient is large, the flux should 
go like e~*2, a Gaussian curve centered where w =WR. This behavior is shown by 
the curves for r/R equal to 0.28 and 0.56 (note that u)R is set by the center wire 
bias and decreases with radius). At the top of the density profile the gradient is 
zero, so we expect an xe~x behavior, and this seems to match the r/R = 0.39 
curve. Although not shown, we have verified that the curves shift horizontally in 
an appropriate way as the center wire bias (and thus UJR) is varied. Also, if the 
asymmetry is made to spin opposite the direction of LOR (corresponding to negative 
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FIGURE 3. Log-log plot of the asymmetry-induced rate of density change dn/dt versus the 
asymmetry amplitude at the wall. The scaling is consistent with plateau-regime theory only for 
low amplitudes. 

values of LJ), no resonances are observed in the flux. 
Figure 5 shows how the peak frequency of these flux resonances varies with 

radius and axial mode number n, and it is here that, we get our first indication of 
discrepancy between theory and experiment. As noted above, the experimental 
peak frequency decreases with radius as expected (open symbols), but the decrease 
does not match that predicted by theory (filled symbols). Theory also predicts an 
increase of peak frequency with axial mode number n. We observe an increase, 
but it is not in accord with the theory. 

We have also compared the amplitude of the experimentally measured flux reso- 
nances with the prediction of plateau regime theory. The result is shown in Figure 
6. Although the curves are similar, several discrepancies are clear. As noted 
above the peaks (in this case the minima) of the resonances occur at slightly differ- 
ent frequencies. More importantly, the value of the experimental flux at, the peak 
is roughly forty times smaller than the theoretical prediction. Lastly, although the 
theoretical curve passes smoothly through u> = 0 with a significant positive flux, 
the experimental curve shows anomalously low transport near u = 0. 

CONCLUSION 

We have begun to test the resonant particle theory of asymmetry-induced trans- 
port under very simple conditions.   Our initial results support the idea that reso- 
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nant particles dominate the transport and we observe an amplitude scaling consis- 
tent with plateau regime theory. However, several discrepancies between theory 
and experiment are observed and it already seems clear that current theory does 
not give a complete description of this transport. 
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Quadrupole Induced Resonant Particle 
Transport in a Pure Electron Plasma 

E. Gilson1 and J. Fajans2 

Department of Physics 
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Berkeley, California, 94720-7300 

Abstract. We have performed experiments that explore the effects of a magnetic 
quadrupole field on a pure electron plasma confined in a Malmbcrg-Penning trap. 
We have developed a model which describes the shape of the plasma and shows that a 
certain class of resonant electrons follows trajectories that take them out of the plasma. 
Even though the quadrupole field destroys the cylindrical symmetry of the system, the 
theory predicts that if the electrons are off resonance, the lifetime of the plasma is not 
greatly affected by the quadrupole field, but near resonance the lifetime diminishes 
sharply. Preliminary experimental results show that the shape of the plasma and the 
plasma lifetime agree with the model. We are investigating the lifetime scaling with 
various experimental parameters such as the plasma length, density, and strength of the 
quadrupole field. This resonant particle transport may be detrimental to experiments 
which plan to use magnetic: quadrupole neutral atom traps to confine anti-hydrogen 
created in double-well positron/anti-proton Malmberg-Peiming traps.3 

Resonant particle transport has long been suspected as the primary cause of 
plasma loss in Malmberg-Pcnning traps, but there is no conclusive experimental 
evidence to support this claim [1-5]. We have found experimental evidence for 
resonant particle transport when we apply a quadrupole magnetic field to our sys- 
tem. We have also measured the equilibrium shape of plasmas when a magnetic 
quadrupole perturbation is present. The results of this research apply directly to 
anti-hydrogen creation experiments proposed by the ATHENA and ATRAP col- 
laborations. Malmberg-Penning traps will be used to confine positrons and anti- 
protons, which should recombine into anti-hydrogen. Quadrupole fields will be used 
to confine the neutral anti-hydrogen. 

With an axially invariant transverse magnetic quadrupole field, the total mag- 
netic field becomes 

3 = B0z + ßq(xx-yy), (1) 

*'  epgilson@physies.berkeley.edu 
2) joel@physics.berkeley.edu 
3>  ATHENA and ATRAP Collaborations. 
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where B0z is the standard axial field. The self electric fields of the plasma cause it 

5^—3 
A ^^^~-~* 

l^r* ^f 
}     ? 

FIGURE 1. Adding a small transverse quadrupole perturbation to a constant axial field pro- 

duces the field lines shown in this figure. 

to E x B drift around the trap axis. When this rotation is slow compared to the 
time it takes an electron to bounce back and forth across the length of the plasma, 
the electrons follow the magnetic field lines shown in Fig. 1. The plasma has a 
circular cross section in the middle and has elliptical cross sections at both ends. 
The ellipses are rotated 90° from one another. When the rotation is fast compared 
to the bounce time, the plasma smears out into a cylinder. 

FIGURE 2. The equilibrium shape of a slowly rotating plasma. The lines with arrows (to be 
discussed later) show the trajectory followed by an outward moving resonant electron. 

We measure the ellipticity e and orientation 6 of the plasma either by imaging 
the plasma or by measuring the image charge induced on the trap walls. When 
the plasma is rotating slowly, the quadrupole moment, as expected, is zero in the 
center of the plasma, has equal and opposite values at the ends of the plasma, and 
is proportional to ßq. When we image quickly and slowly rotating plasmas, we see 
the expected circular and elliptical shapes. 

Theoretically, e - 1 should scale with ßq/B0, and is in rough agreement with the 
data shown in Fig. 5. We do not understand the step in the data at B0 ~ 400 G. 
The variation in angle is reminiscent of the drive/response phase shift of a damped 
driven simple harmonic oscillator as it passes through resonance. 

If the rotation rate is such that an electron makes a quarter revolution each time 
it travels the length of the plasma, the electron can move ever outwards or inwards 
(see the lines with arrows in Fig. 2). For a constant density plasma, the resonance 
condition is, 

B0=^. (2) 
ne0vz 

Resonant and near-resonant electrons traveling outwards can leave the plasma 
very quickly. Diffusion due to this mechanism can be large. There are higher order 
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4(G/cm) 
FIGURE 3.  Measurements of quadrupole moment along the plasma's length show the axial 
dependence and ßq proportionality that we expect. 

(a) 
FIGURE 4. ßg/B0 = 0.004 cm-1, (a) B0 = 32.43 G so the plasma is rotating quickly. We 
measure e = 1.09 and 0 — 53.5°. (b) B0 = 500 G so the plasma is rotating slowly. We measure 
e = 1.26 and 0 = -37.5°. 

resonances in which the electron makes N/A (N odd) revolutions as it travels across 
the plasma, but these are less important. 

Above resonance, when the plasma is rotating slowly, the resonant velocity lies 
well within the electron distribution function f(v). There are many resonant elec- 
trons and the quadrupole field has a strong effect. Well below resonance, when the 
plasma is rotating quickly, the resonant velocity falls in the tail of f(v). Conse- 
quently, there are few resonant electrons and the quadrupole field has little effect. 

This resonance effect can be seen in Fig. 6. Below resonance [Fig. 6 (a)], the 
application of the quadrupole field has no effect on the evolution of the central 
density as a function of time until the plasma expands enough so that the resonance 
condition is met. The plasma in Fig. 6 (b) begins above resonance so the quadrupole 
field has an immediate effect on the central density. 

From a series of images taken at successive times, we measure the diffusion 
coefficient, D. The plasma images measure the z-averaged radial density profile 
77,(7", t), from which we compute N(r, t) = /J" n(r', t)2itr' dr'. 

We write the diffusion equation in polar coordinates, integrate once with respect 
to T and rearrange to yield 

D(R) = 
dN/dt 

2-KR dn/dr r=fi 
(3) 
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FIGURE 5. The scaled ellipticity and angle of the plasma as functions of B0 as measured from 
images such as those shown in Fig. 4. 
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FIGURE 6. By comparing the time evolution of the central density with the quadrupole field 
on and off, we can separate the effects of the quadrupole field from other plasma loss mechanisms. 

All 9 variations have been neglected because the quadrupole field used in the dif- 
fusion experiments is typically small. 

In Fig. 7 (a,b), we keep ßq/B0 fixed, as would be the case if the quadrupole field 
were due to imperfections in the main magnet coils. When ßq ^ 0, D is the sum 
of the diffusion due to both the quadrupole field and background processes. Below 
resonance, the quadrupole field has little effect, but above resonance it enhances 
diffusion. In Fig. 7 (c,d), we hold ßq fixed. For large B0, the diffusion due to the 
quadrupole field becomes small and background processes dominate the diffusion. 
The anomalous structure in the background (Dßq=0) data needs to be understood 
before further study can be completed. 

By measuring the relative lifetimes using three different plasma lengths, we see 
that the location of the resonance moves in agreement with the change in the 
resonance condition. To find the plasma's lifetime, we measure the time it takes 
for the central density to drop to ~ 70% of its initial value. We do this both with 
the quadrupole field on and off, then compute the relative lifetime. 

We model the results of our experiments by constructing a diffusion coefficient, 
D — AV/, where A is the average step size of a resonant electron, v is the fre- 
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0. (c) D for ftq = 0,0.1 G cm-1, (d) Near resonance, D 

due to the quadrupole field is enhanced. In (1>) and (d), the solid curve is D(n,kT,B0) from the 

theory using the measured densities at each point and assuming kT — 1.5 eV. 

quency of collisions that knock an electron oiit of resonance, and / is the fraction 
of electrons that satisfy the resonance condition. We must sum over the higher 
order resonances to obtain an expression for D. The result is D = Y,N Odd Av, 
where, for a constant density plasma, 

?2„2Ö2 

DN = 
m, '.(il 

2wkT\BJ Ar5R2 

L3 

exp 
"th 

(4) 

This formula, suitably generalized for arbitrary n(r), is \ised in Fig. 7 (b,d). 
Clear evidence for resonant particle transport as the mechanism for plasma loss in 

Malmberg-Penning traps has been lacking. When applying a magnetic quadrupole 
perturbation, we observe resonant behavior that could help to explain plasma loss in 
Malmberg-Penning traps. If operating in suitable parameter regime, experiments 
planned by the ATHENA and ATRAP collaborations may be able to use both 
Malmberg-Penning traps and quadrupole traps. For example, if ATRAP operates 
with B0 = 2 T, n = 108 cm"3, L = 1 cm, and T = 4 K [6], they will be near the 
resonant axial field of 0.7 T and plasma loss due to the quadrupole field may be 
too great to tolerate. 
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Two Experimental Regimes of 
Asymmetry-Induced Transport 

Jason M. Kriesel and C. Fred Driscoll 

Physics Dept, University of California, San Diego CA 92093-0319 

Abstract. In a cylindrical trap, azimuthally asymmetric electric or magnetic fields 
(such as inherent trap asymmetries) cause the cross-magnetic-field transport of parti- 
cles, leading to bulk radial expansion and eventually to particle loss at the trap walls. 
Experiments with applied electrostatic asymmetries identify two different transport 
regimes, "slightly-rigid" and "highly-rigid". Here the plasma rigidity, U = Tblfs, is 
the ratio of the axial bounce frequency to the azimuthal E x B rotation frequency. In 
the slightly-rigid regime (1 < H < 10), the transport scales as Va 1Z~2, where Va is the 
applied asymmetry strength. This TV2 ex L2 /B2 scaling has previously been observed 
for transport due to inherent trap asymmetries. The "Va TIT2" mechanism appears to 
"turn-off' as the rigidity is increased into the range 11 > 10. In the highly-rigid regime 
(TZ > 20), the transport scales as V211°. 

INTRODUCTION 

Non-neutral plasmas are readily confined in simple cylindrical traps for relatively 
long periods of time, allowing for many of the experimental studies described in 
these proceedings. Typically, confinement is limited by inherent trap asymmetries 
which cause particles to move radially and be lost at the trap walls. Despite more 
than 20 years of study, this asymmetry-induced transport is not well understood. 

In this paper, we present a brief summary of recent measurements of asymmetry- 
induced transport in electron plasma columns [1]. We purposely break the az- 
imuthal symmetry by applying static voltages of strength Va to sections of the 
trap wall (as shown in Figure 1), and measure the induced change in the plasma 
density profile. We find that the induced transport rates are well characterized 
by the "rigidity" Tl = //,//£, which is the ratio of the thermal axial bounce fre- 
quency to the azimuthal E x B drift frequency. Two different transport regimes 
are identified: "slightly-rigid" (1< K < 10) and "highly-rigid" (11 > 20). 

In the slightly-rigid regime, the expansion rate increases linearly with the applied 
asymmetry strength, Va, and decreases with rigidity as TV2. The mechanism re- 
sponsible for this so-called "V* Tl~2" transport appears to "turn-off' as the rigidity 
is increased into the range Tl — 10 - 20. In the highly-rigid regime, a different 
transport mechanism causes transport with radically different parameter scalings. 

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al. 
© 1999 American Institute of Physics l-56396-913-0/99/$15.00 
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FIGURE 1. Simplified schematic of the experiment. 

In this regime, the expansion rate increases with asymmetry strength as V2 and is 
roughly independent of the plasma rigidity. 

The results presented in this paper lay an empirical framework from which theory 
can progress, and also ties together previous experimental studies. Many previous 
studies measured transport due to inherent trap asymmetries in the slightly-rigid 
regime. These studies found that the transport also scales roughly as TV2 on many 
different apparatuses [2-5]. The original studies [2,3] were conducted at nearly 
constant density and temperature, in which case the rigidity scaling just depends 
on the magnetic field B and plasma length L as K~2 oc L2/B2. This same L2/B2 

scaling has also been observed for particle loss measurements in experiments on 
test-particles in which the particle density is too low to be considered a plasma [6]. 

Other experiments on applied asymmetries found that the transport rate in- 
creases as the square of the asymmetry strength and only weakly depends on the 
magnetic field [7]. These studies were conducted on plasmas primarily in the highly- 
rigid regime and most of the results can be understood in terms of the scalings 
reported in this paper. More recent experiments have found some evidence of en- 
hanced transport due to bounce-resonant effects [8,9], but it is not certain exactly 
how these experiments relate to those presented here. 

ANGULAR MOMENTUM & RADIAL TRANSPORT 

In a Penning-Malmberg trap (shown schematically in Figure 1), particles are 
prevented from leaving along the trap axis simply by applying a sufficient confining 
voltage Vc to end electrodes. The primary loss is in the radial direction, across the 
magnetic field to the walls of the trap at radius R^. This radial transport is con- 
strained by the conservation of angular momentum, and confinement is guaranteed 
in an ideal cylindrically-symmetric trap. In reality, perfect cylindrical symmetry is 
never achieved, and confinement is degraded by inherent trap asymmetries. 

For our electron plasmas, the mechanical part of the canonical angular momen- 
tum is negligible compared to the vector potential part. Thus, the angular momen- 
tum for Ntot electrons with charge -e can be written as 
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eB 
Co = ^Ntot{Rl - (r2)), (1) 

where (r2) is the mean-square-radius of the plasma, and c is the speed of light. 
Conservation of angular momentum thus implies d(r2)/dt = 0, and the plasma is 
restricted from expanding. Conversely, by breaking the symmetry, one can change 
(r2) by torquing on the plasma. Static asymmetries, such as inherent trap asym- 
metries, drag on the rotating plasma and cause an increase in (r2), i.e. the plasma 
expands. On the other hand, the so-called "rotating wall" exerts a positive torque 
on the plasma and causes compression by rotating faster than the plasma [10]. 

In this paper, the primary experimental quantity is the global expansion rate, 

_    1   d(r2) 1   dCg 

^ = (?rsr K " £ IT (2) 

For the experiments presented here Ntot is conserved. Therefore, v^ is directly 
proportional to the rate of change of Co, and is unaffected by internal transport 
mechanisms which conserve Co, such as viscous transport [1,11]. 

EXPERIMENTAL MEASUREMENTS 

Measurements were conducted on two different Penning-Malmberg traps known 
by the acronyms "CamV" and "EV". The traps are similar in construction with 
electrode radii of R», — 3.5 cm for CamV and R^, = 3.81 cm for EV. Both have an 
excellent density diagnostic, which is crucial in accurate studies of radial transport. 
The primary difference is that the magnetic field on CamV has a much larger range 
(B = 0.1 - 10 kG) compared to EV (B = 0.1 - 0.5 kG). 

The radial density profile n(r) is measured by dumping the plasma out one end 
of the trap to a collection device. From the time evolution of the density profile 
we calculate local transport quantities, such as the radial flux of particles T(r), as 
well as global quantities, such as the expansion rate ^(r

2)- 
An example of the change in the density profile due to an applied asymmetry of 

strength Va — 3 V is shown in Figure 2(a). The difference in hold times between 
density measurements is kept short enough that iVtot is conserved and the plasma 
density and temperature do not change substantially. 

Examples of the time evolution of (r2) are shown in Figure 2(b) for 4 different 
applied voltage strengths, including Va = 0. Each point is this figure is calculated 
from a different density profile using the formula 

(r2) = ^r- f * rdrn{r)r2. (3) 
i^tot  JO 

At the bottom of Figure 2(b), we display the time dependence of the applied 
asymmetry. After the perturbation is ramped on, the plasma expands at a rate, 
i/(r2)(va), that depends upon the asymmetry strength Va. With no applied voltage 
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FIGURE 2. (a) Change in density due to applied asymmetry, (b) Time evolution of (r2) due 
to applied asymmetries of different strengths. 

(i.e. Va = 0), the plasma expands due to the inherent trap asymmetries. We 
subtract off this "background" expansion rate, ^(o), to obtain the net expansion 
rate, Au^Va), due just to the applied asymmetry, 

Al/(r2)(Va)   =   V(T2){Va)  -V(T2)(0) (4) 

We find that this expansion rate is well characterized by the plasma rigidity 11. 
In terms of the axial magnetic field B, the average plasma density n, length L, and 
temperature T, we approximate the rigidity for each plasma as 

11 = fb/fs w 14-6 
r B i 
LlkGj 

r T i 
[levJ 

1/2 n -l r   L   i 
.10 cm. Ll07cm-3J (5) 

EXPERIMENTAL RESULTS 

The voltage dependencies of the expansion rate are shown in Figure 3 for the 
two different transport regimes. For the slightly-rigid plasma (R. — 2.5) shown in 
Figure 3(a), the expansion rate increases linearly with applied voltage (i.e. Ai/^j oc 
V^) over two orders of magnitude in Va. This scaling is in direct contradiction 
to current theories of transport due to bounce-resonant particles, which predict 
either a Va

2 or Va
1/2 dependence [9,12]. The arrows at the bottom of the figure 

indicate the effective strength of inherent trap asymmetries for EV and CamV as 
well as published estimates for traps at Occidental College [6] and the University 
of California at Berkeley [7]. Figure 3(a) thus shows that the Va

l scaling occurs for 
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asymmetry strengths on the order of (and even less than) the inherent asymmetries 
in many typical Penning-Malmberg traps. 

The voltage scaling is different for a highly-rigid plasma. The expansion rate 
for these plasmas increases as A^r2} a Fa

2 even for relatively large asymmetry 
strengths, as shown in Figure 3(b) for a plasma with 71 = 62. 

In addition to the voltage dependence, we have measured asymmetry transport 
for a range of density, length, temperature, and magnetic field. The scaling of the 
expansion rate with these plasma parameters is condensed to a dependence on the 
rigidity, as shown in Figure 4. The points in this figure are obtained from measure- 
ments of A^(r2) vs Va for each set of initial conditions. The voltage dependence is 
scaled out by fitting each data set to a power-law; for a slightly-rigid plasma we 
fit to Va\ and for a highly-rigid plasma we fit to Va

2. We evaluate the data fits 
at Va = 1 V, and plot the results in Figure 4 as a function of the rigidity of the 
plasma. For example, fits to the data sets shown in Figure 3 yield values of 1.2 for 
11 = 2.5 and 5.4 x 1(T4 for 11- 62. 

In Figure 4, the expansion rate for slightly-rigid plasmas is shown to decrease 
with plasma rigidity approximately as Av^ oc TZ     oc TB2 In this regime, the 
expansion rate is well approximated with the simple formula [1] 
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Af(r2) = 7 sec l Va 
IV. 

-FT2    (slightly-rigid), (6) 

where 7£ is approximated by Equation 5. 
As the plasma rigidity is increased, not only does the voltage dependence change 

(as shown in Figure 3), but the dependence on plasma parameters changes also. 
The Vß TV2 mechanism appears to "turn-off' as the rigidity is increased into the 
range "R, > 10. This "turn-off' is not understood, but may be an indication of the 
bounce motion becoming a good adiabatic invariant at high rigidity. 

For a highly-rigid plasma, the transport is independent of rigidity, as shown by 
the circular points on the bottom right of Figure 4. For this data, the rigidity 
was primarily varied by changing the magnetic field; therefore, the independence 
in rigidity is more accurately an independence in magnetic field (i.e. A^sj oc B°). 

Cross-field transport that is independent of the magnetic field strength has been 
observed in other experiments which measured the damping of the m = 1 dio- 
cotron mode [13]. These measurements were found to agree very closely with so- 
called "Rotational-Pumping" theory [14]. A similar mechanism may be causing 
asymmetry-induced transport in the highly-rigid regime; however, calculations of 
Rotational-Pumping theory appropriate to the perturbations applied here have not 
yet been made. 

In addition to the observed independence with magnetic field, the expansion 
rate in the highly-rigid regime has been found to be roughly independent of length 
and inversely proportional to both density and temperature. For this (somewhat 
preliminary) data, the transport rate is approximated with the formula [1] 

\Ya] LivJ 
2 r T i 

lleV. 

-l n 
[l07cm-3J 

*V>~5xlO -4sec        -£       — 3 (highly-rigid).     (7) 

DEPENDENCE ON AXIAL AND AZIMUTHAL 
VARIATIONS 

In the remainder of this paper, we present results concerning the dependence 
of the measured transport on the axial and azimuthal variations of the applied 
asymmetry. We begin by considering the decomposition of an asymmetry applied 
at r — Ry, into Fourier vacuum fields of relative amplitude Am^. '■ 

$a(r,M = K £ 4»,*, (Vf eimfl e"fc=2/L> (8) 
m,kz 

yH™J 

where kz describes the axial dependence and m describes the azimuthal dependence. 
For all the data shown in Figures 3 and 4, a positive voltage +Va was applied 

to a wall patch on one side of the plasma and a negative voltage —Va was applied 
to a patch on the opposite side (as shown in Figure 1).  We label this an m = 1 
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asymmetry, in terms of its dominant azimuthal mode number. The wall patches are 
of fixed length of about 4 cm. In general, the plasma extends beyond the patches 
(as shown in Figure 1), which means the plasma "sees" an asymmetry with an 
axial variation. Properly considered, the asymmetry has many different kz Fourier 
modes, but we simply refer to this case as a kz ^ 0 asymmetry. The data in Figure 3 
and all the solid points in Figure 4 are for kz # 0 asymmetries. 

We find that the V* TC2 transport mechanism is not active if we apply the 
asymmetry over the entire axial extent of a short (L « 4 cm) plasma. In this 
case, kz = 0 and Equation 6 is not valid. Instead, the expansion rate follows a 
Ai/(r2) oc Vl dependence regardless of whether the plasma is slightly- or highly- 
rigid. Also, the magnitude of the expansion rate in the slightly-rigid regime is 
about a factor of 10 less for a kz = 0 compared to a kz £ 0 asymmetry of Va = 1 V. 
This latter result is shown in Figure 4, where the open points are for kz = 0. 
Therefore, it appears that the plasma must be slightly-rigid and the asymmetry 
must have some axial variation for the V* TV2 mechanism to be active. 

In addition to measurements for m = 1 asymmetries, we have also measured 
transport due to nominal m = 2 and m = 4 asymmetries. We find that the global 
expansion rate Av^ does not depend strongly on the azimuthal variation in the 
asymmetry [1]; however, the radial dependence of local transport measurements are 
qualitatively different. 

In Figure 5, we shown the effects on the density profile n(r) of a slightly-rigid 
plasma (11 = 2.5) due to the inherent trap asymmetries, and due to m = 1, m = 2, 
and m = 4 applied asymmetries. Here the asymmetry is kz ^ 0 applied near the 
axial middle of a long (L = 30 cm) plasma. In all four cases, the plasma has the 
same initial density profile (dashed curves), but the different asymmetries cause the 
plasma to evolve to different final density profiles (solid curves). The time between 
profiles is At = 0.033 sec, and we plot An(r)/At in the top portion of each figure. 

The inherent asymmetries cause a relatively small amount of transport only at 
the radial edge of the plasma. In contrast, an m = 1 asymmetry causes transport 
across the the entire plasma. The m = 2 and m = 4 asymmetries cause a similar 
amount of transport near the edge of the plasma, but the density near the center 
of the plasma is not strongly affected. The contrast is particularly striking between 
the m — 1 and m = 4 asymmetries. 

From the measured change in density, we calculate the local radial flux of particles 
for the different m number asymmetries as T(r) = -$ Jo dr'r'^£p-. The fluxes 
are shown in Figure 6 to vary as T(r) oc rm over the interior of the plasma. The 
dashed curve in the figure is the initial density profile, which is plotted to show 
that the flux goes to zero at the edge of the plasma (as expected). 

In the slightly-rigid regime, not only does the global transport depend linearly 
on the applied voltage (i.e. Ai^ oc Va), but the local flux appears to vary linearly 
with the local vacuum field of the asymmetry (i.e. T(r) oc V;(r/i4)m). This 
is somewhat surprising, because one might have expected the asymmetry to be 
"shielded" from the center of the plasma, and the transport to occur just at the 
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radial edge of the plasma.  However, as was shown in Figure 5(b), transport can 
occur over the entire plasma with no apparent effects due to shielding. 

SUMMARY 

We measure transport caused by static azimuthally asymmetric voltages applied 
to wall patches on cylindrical traps. We identify two different transport regimes, 
slightly-rigid and highly-rigid, in which two different mechanisms dominate the 
transport. The parameter dependence in these two regimes are summarized in the 
table below. In terms of the applied asymmetry strength and rigidity, plasmas 
expand at a rate that scales as Ai/<r2> x K^~2 in the slightly-rigid regime. This 
mechanism is not active when the rigidity is too high, nor when the asymmetry is 
applied over the entire plasma. In the highly-rigid regime, plasma expansion scales 
as Ai/(r2) oc V2TZ°, which is independent of the magnetic field strength. 

Regime Voltage Dependence Parameter Dependence 

Slightly Rigid (1< 11 < 10) V1 
"a /V         OC   j, £j2 

Highly Rigid (ft > 20) V2 r
 a ^- (preliminary) 

This work supported by ONR #N00014-96-l-0239 and NSF #PHY-9876999. 

REFERENCES 

1. Kriesel, J. M., PhD thesis, University of California at San Diego, (1999). 
2. Driscoll, C. F. and Malmberg, J. H., Phys. Rev. Lett. 50, 167 (1983). 
3. Driscoll, C. F., Fine, K. S., and Malmberg, J. H., Phys. Fluids 29, 2015 (1986). 
4. Cluggish, B. P., PhD thesis, University of California at San Diego, (1995). 
5. Cass, A. C, et. al, Bull. Am. Phys. Soc. 39, 1737 (1994). 
6. Eggleston, D. L., Phys. Plasmas 4, 1196 (1997). 
7. Notte, J., Fajans, J., Phys. Plasmas 1, 1123 (1994). 
8. Gilson, E., Fajans, J., see article in these proceedings. 
9. Eggleston, D. L., see article in these proceedings. 

10. Anderegg, F., Hollmann, E. M., and Driscoll, C. F., see article in these proceedings. 
11. Kriesel, J. M. and Driscoll, C. F., see separate article in these proceedings. 
12. Eggleston, D. L. and O'Neil, T. M., Phys. Plasmas 6, 2699 (1999). 
13. Cluggish, B. P. and Driscoll, C. F., Phys. Rev. Lett. 74, 4213 (1995). 
14. Crooks, S. and O'Neil, T. M., Phys. Plasmas 2, 355 (1995). 

265 



Experiments on Viscous Transport in 
Pure-Electron Plasmas 

Jason M. Kriesel and C. Fred Driscoll 

Physics Dept., University of California, San Diego CA 92093-0319 

Abstract. Viscous transport in pure-electron plasmas is a rearrangement of parti- 
cles due to like-particle interactions, eventually leading to a confined global thermal 
equilibrium state. The measured transport is observed to be proportional to the shear 
in the total (E x B -f diamagnetic) fluid rotation of the plasma, for both hollow and 
monotonic rotation profiles. We determine the local kinematic viscosity, K, from mea- 
surements of the local flux of electrons. The measured viscosity is 50 -104 times larger 
than expected from classical transport due to short-range velocity-scattering collisions, 
but is within a factor of 10 of recent theories by O'Neil and Dubin of transport due 
to long-range drift collisions. The measured viscosity scales with magnetic field and 
plasma length roughly as K <X B/L. This scaling suggests a finite-length transport 
enhancement caused by particles interacting multiple times as they bounce axially 
between the ends of the plasma. 

INTRODUCTION 

Like-particle interactions cause a non-neutral plasma to evolve toward the global 
thermal equilibrium state of rigid rotation and essentially uniform density. This 
cross-field transport to thermal equilibrium was previously observed in 1988 by 
Driscoll et.al. using short hollow plasmas [1]. The global rate at which the plasma 
approached equilibrium was found to be orders of magnitude faster than classical 
theory predictions and to scale differently with magnetic field. 

In this paper, we summarize recent detailed measurements of like-particle trans- 
port in electron plasma columns [2]. The radial flux of electrons is well described 
by a local model of viscosity, in which the transport is driven by local shears in 
the fluid velocity of the column. From measured density profiles we experimentally 
determine the local coefficient of viscosity and compare the results to theoretical 
predictions. We find that recent Long-Range theories, which consider interaction 
distances on the order of a Debye length, are in much better agreement with the 
measurements than Classical theory, which only considers interaction distances on 
the order of a cyclotron radius. 

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al. 
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THEORIES OF VISCOUS TRANSPORT 

Comparisons between measurements and theory are based on a standard model 
of viscous transport in a cylindrically-symmetric fluid [3]. Here, we are concerned 
with the radial transport due to shears in the azimuthal velocity. This transport is 
described by the (r, 6) component of the stress tensor, 

PT6 = ~Vr dr (1) 

where rj is the coefficient of viscosity and ujtot = uE + UD = ^ [^ ~ 7^(fr\ *s 

the total (E x B + diamagnetic) rotation frequency in the azimuthal direction. 
The viscosity coefficient, in effect, describes angular momentum exchange be- 

tween interacting particles. It has the form r\ - menveffö
2, where veff is the 

effective collision frequency of momentum exchange, and 5 is the distance over 
which the electrons interact. In this paper, we plot the kinematic viscosity /t, 
which is T] scaled by the electron density n and mass me, 

_    V 
K —   

men 
veff5

2. (2) 

A simplified summary of theoretical predictions for K is displayed in the table below. 
Classical theory [4] describes transport due to velocity-scattering collisions be- 

tween electrons separated by a distance on the order of the cyclotron radius (i.e. 
5 ~ rc), as shown in Figure 1(a). These interactions occur at an effective rate on 
the order of the electron-electron collision frequency, i.e. ve!S ~ uee « vc In (rc/&), 
where vc = nv b2, v is the thermal velocity, and b is the distance of closest approach. 

Long-Range theories by Dubin and O'Neil [5-7] describe transport due to E x B 
drift collisions, as shown in Figure 1(b). The "3-D" version of the theory [5] con- 
siders an infinite length plasma, so electrons effectively collide only once. The 
interaction distance is a Debye length, i.e. S ~ XD, and the effective collision fre- 
quency is vej; ~ vc ln(wp/i/ee), where LJP is the plasma frequency. In a non-neutral 
plasma, this Long-Range prediction gives a substantially larger viscosity coefficient 
than Classical theory, since A# S> rc. 

Interaction 

Distance 5 

Effective Collision 

Frequency uefj 

Scaling of K with 

JB-field & Length 

Classical rc vc ln(rc/6) B-2L° 

Long- 

Range 

3D \D i/c ln(wp/i/ee) B°L° 

2D XDrcLJp 
l/L dL/dr 
T duJE/dr Vc Koll BlL~z 

Empirical AD vc (1 + NcoU) B'L-1 
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FIGURE 1.   Cartoon of electron-electron interactions as described by  (a)   Classical veloc- 
ity-scattering theory (b) Long-Range E x B drift theory. 

Enhancements to the Long-Range viscosity are predicted to occur when finite 
length effects are included in the theory; but these effects are not yet understood in 
detail^ As electrons bounce axially between the ends of the plasma (with thermal 
rate fb = v/2L), they "collide" NcoU = Tb/\rduE/dr\ times before being sheared 
apart. In the current "2-D" Long-Range theory [7], the bounce motion is averaged 
out and electrons are considered to interact as rods of charge. The interaction 
distance is listed in the table and the effective collision frequency is vefj ~ uc NcoU. 
This theory applies to plasmas with either monotonic or hollow rotation profiles, 
whereas a previous version [6] only applied to hollow plasmas. 

In the table, we also list an empirical viscosity formula, which uses the interaction 
distance of the 3-D Long-Range theory (6 = XD) and an effective collision frequency 
similar to that of the 2-D Long-Range theory {vefl = vc (1 + iVco„)). We find that 
this simple empirical viscosity provides the best agreement with the measurements. 

MEASURED VISCOSITY 

We determine the radial particle transport from measurements of the density pro- 
file of the plasma n(r). The local radial flux of particles, T(r) = -i J0

r dr'r' ^p, 
is calculated from the change in density An(r) over a duration At, and the local 
experimental stress (or flux of angular momentum) is Px{r) = —\ födr'r'2 T(r'). 
Motivated by the viscous model, the kinematic viscosity is then calculated ex- 
perimentally as the ratio of the measured stress to the shear in the plasma 
Mr) == -men(r)^a2tot(r)/3r' where Vtot(r) is determined from the measured density 
n(r) and temperature T. 

Figure 2 shows the evolution of the radial density and rotation profile at three dif- 
ferent times. Initially, the plasma has substantial density gradients and rotational 
shear. The plasma rearranges itself to eliminate the shears; as a consequence, some 
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FIGURE 2. Example of density profile evolution due to viscous transport. 

electrons move radially inward while others move outward. The angular momen- 
tum is conserved throughout the entire evolution shown in Figure 2, indicating the 
transport is due to like-particle (internal) interactions. In addition, the local flux 
of particles appears to be driven by the local shears in the total plasma rotation, 
in verification of the viscous model [2]. 

The local kinematic viscosity nx(r) is calculated for small values of At so that the 
plasma parameters do not vary substantially, e.g. between ti = 0.1 s and i2 = 0.3 s 
in Figure 2. We then average Kx(r) over the radial region near the density peak 
(where the signal to noise is best) to obtain a single number KX for any given set 
of initial conditions. 

Measurements of the kinematic viscosity for relatively short plasmas are shown 
in Figure 3 as a function of the confining magnetic field. The measured viscosity 
is as much as 4 orders of magnitude larger than predictions from Classical theory 
and increases with magnetic field roughly as KX OC Bl. Predictions of the 3D 
Long-Range theory, while much closer than Classical theory, are smaller than the 
measured values and scale as K oc 5°. The 2D Long-Range theory prediction has 
the B1 scaling, but is about 10 times larger. An additional result is that we find 
no substantial difference between the measured viscosity for a hollow profile and 
that for a monotonic profile. 

We have measured the viscosity for different length plasmas, and find the ap- 
proximate scaling KX OC 1/L [2]. (Note: This scaling is in sharp contrast to the 
observed increase in (external) asymmetry-induced transport with plasma length 
for these "slightly-rigid" plasmas [2,8].) The viscosity coefficient also appears to 
depend upon the E x B shear in the plasma, as described by Ncou. 

The entire parameter dependence is summarized by Figure 4, which displays the 
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10J 

scaled kinematic viscosity K/VCX
2

D as a function of the average number of collisions 
NcoH. The data roughly follows the simple empirical formula 

K = (1 + iVco„) vc X2
D. (3) 

In terms of the rigidity % = 2TT fb/uiE, the plasmas used in this study were 
"slightly-rigid" with 1 < 11 < 10. The prediction from the 3D Long-Range theory 
is in agreement with the measured data for JVC0,( « 1, where the plasma is somewhat 
"floppy" (72. < 1) and the enhancement due to multiple collisions is weak. At larger 
values of JVco(,, the plasma is "slightly-rigid" and the measured viscosity is larger 
than the 3-D predictions by an amount that is approximately proportional to Ncoll. 
Further experiments are planned using "highly-rigid" plasmas (11 > 10) at larger 
magnetic fields (up to B = 104 G) to obtain the viscosity at even larger values of 
NcoH. 

In other experiments, the 3-D Long-Range theory of like-particle interactions 
has successfully predicted coefficients for heat [9] and test-particle transport [10]. 
Both these studies were conducted on "floppy" ion plasmas, for which NcoU < 1. 
Experiments have not yet tested the 2-D Long-Range predictions [11] for these 
coefficients at higher values of NcoU. 
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FIGURE 4. Scaled kinematic viscosity versus the average number of collisions, JVco;j. 

SUMMARY 
We determine the effective viscosity in electron plasmas from measurements of 

the local flux of particles. The measured viscosity disagrees strongly with Classical 
velocity-scattering theory, but agrees well with 3-D Long-Range E x B drift theory 
when the plasma is somewhat "floppy". At higher plasma rigidity, finite length 
effects appear to cause an enhancement to the viscosity which scales roughly as 
the average number of collisions NcoU oc B/L. A 2-D theory predicts such an 
enhancement, but gives viscosity coefficients about 10 times too large. 
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Abstract. Viscous dissipation is shown to cause radial expansion of asymmetric non-neutral 
plasmas. Energy balance considerations are used to explain some of the features of the ex- 
perimentally observed scaling law for the confinement time of azimuthally asymmetric non- 
neutral plasmas. 

INTRODUCTION 

Pure electron plasmas have been confined in the laboratory in azimuthally 
symmetric traps for hours (1). The long confinement time was explained theoretically 
using the conservation of canonical angular momentum (2). In the absence of azi- 
muthal symmetry canonical angular momentum is not conserved and this theory 
would not apply. To test whether good confinement would still be obtained, experi- 
ments were carried out with deliberately applied large asymmetries (3). Surprisingly, 
long confinement times were observed even in the presence of applied asymmetries. 
From the experimental data a scaling law for the confinement time was derived (4). 
Theoretical models were provided for the equilibrium and stability of the asymmetric 
plasmas (5-7) but no theoretical explanation was provided for the scaling law for con- 
finement time. 

Recently Eggleston and O'Neil (8) have developed a theoretical model which 
explains some of the features of the scaling law. Starting from the drift kinetic equa- 
tion the model computes the radial transport assuming it to be dominated by particles 
which move in resonance with the applied asymmetry. In the present study we sug- 
gest an alternative theoretical explanation based on a fluid model for the plasma. Ex- 
planation for the degradation in the confinement time due to asymmetry is based on a 
simple physical reasoning. Imposition of asymmetry causes deviation from a rigid 
rotor equilibrium, resulting in viscous dissipation. For a non-diamagnetic, low density 
non-neutral plasma this energy dissipated must come from the electrostatic energy of 
the plasma, consequently the plasma must expand radially. The expansion rate can be 
obtained from energy balance. This is used to explain some of the features of the 
Notte-Fajans scaling law (4). 

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al. 
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ENERGY BALANCE IN THE PRESENCE OF VISCOSITY 

We consider a cylindrical column of non-neutral plasma surrounded by a vac- 
uum region, enclosed, in tarn, by a grounded conducting wall. The governing equa- 
tions in the plasma, assuming a fluid model, are 

— + V-(«v)=(), (1) 
dt      v 

0 = *iK-V9 + vxB)-V;,+ % + ^ + ^-, (2) 
8x      ay      oz 

V2cp = -^-H, (3) 

where n, v, and p are the number density, fluid velocity, and pressure of the plasma, 
0X, CTy, and az are the viscous stress vectors acting on planes normal to the x, y, and z 
directions, in a Cartesian coordinate system (xy^), cp and B are the electrostatic po- 
tential and the magnetic field, q is the charge on each particle of the plasma and 8o is 
the permittivity of free space. We have assumed that plasma inertia can be neglected. 
In the vacuum the electrostatic potential satisfies 

V2cp = 0 . (4) 
Integrating the scalar product of equation (2) with v over the plasma volume, we ob- 
tain, after some algebra 

■fe,<tjV'<tdV 

-i 
/„    \          dv           dv          dv 

plV-v)-ar a„ a.  
^V      '     x   dx      "   dy      z   dz 

dV, (5) 

where P represents the plasma volume. In deriving equation (5) we have used equa- 
tions (1) and (3) and it has been assumed that n goes smoothly to zero on the plasma 
boundary and no work is done by pressure and viscous stresses on the plasma bound- 
ary, which would be true for a stress free boundary. From equation (4) it readily fol- 
lows that 

-f£0cp-V2cprfF = 0, (6) 
f       dt 

where V represents the vacuum region. Adding equations (5) and (6), using the iden- 
tity 

,±Vf-v(f|vf)-i(I|vH 
using continuity of cp and its normal derivative at the plasma vacuum boundary and 
assuming cp = 0 on the conducting wall, we obtain 

*L = -D-W. (7) 
dt 

Here 
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U-- J^O|V<P!2 dV+jU0\Vq>\2dV, 

is the electrostatic energy 

W = -$p(V-\)dV, 
p 

is the work done in compressing the plasma and 

D= fodV, 
p 

where 

(8) 

(9) 

(10) 

<1> = CT. 
8v 

— + o „ 
dx      ' 

dv 
- + 0. (ID 

dy 8z' 
which is called the dissipation function, represents the energy dissipated by viscosity 
in a unit volume. If we assume that the plasma compression term W can be neglected 
then equation (7) shows that the energy dissipated by viscosity comes from the elec- 
trostatic energy. By the first law of thermodynamics this is converted to internal en- 
ergy of the plasma. 

APPLICATION TO A NON-CIRCULAR PLASMA 

We now compute the viscous dissipation for a plasma column of non-circular 
cross-section. We assume that the dissipation function has the same expression as for 
a Newtonian fluid. Then, in cylindrical coordinates (r,0,z), assuming v. =0, 

d/dz = 0, we have (9) 

<D = 2u 
dr J do 

dvr     1 dva 

r 
1 

+ — 
2 dr 

v, 

r     r do 

dr 
■ + — 

r d& 
(12) 

where u is the coefficient of viscosity. To evaluate O we need the velocity distribu- 
tion, which we compute using an inviscid model. Including viscosity would lead to 
corrections of higher order in u. Therefore, the dissipation computed using the veloc- 
ity distribution from an inviscid model would be correct to leading order in u. For 
simplicity we also neglect pressure. Then equation (2) reduces to 

-Vcp + vxB = 0. (13) 
In the inviscid model there is no radial expansion and equation (1) reduces to 
V ■ (nv) = 0. Since we assume v2 = 0, d/dz = 0, we can write 

«v = VxxeI. (14) 

From the component of equation (13) parallel to v it follows that % = x(<p). Then from 
equations (3) and (13) it readily follows that 
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V2<p=F((p), (15) 

where F(q>) = (qB0 /s0 )d%/dq>. To construct an equilibrium with a non-circular cross- 

section we choose, for simplicity, F(cp) = C = const, and assume a plasma boundary 

r = a[1 + s(cos2e-i)]> (16) 
where ic is a measure of ellipticity. We assume ic «1 and use it as an expansion pa- 
rameter to solve perturbatively for the equilibrium. We obtain 

(p = _£(^_r2)+^l_^r2cos2e + <9(-2); (17) 

v = — |--Krcos2e|e9-—(icrsin2e)e,+ ö(K
2
). (18) 

B0 \2 )       B0 

From equations (9) and (18) it is readily seen that W = 0. Substituting from equation 
(18) in equation (12), we obtain 

O = 4jo. 
Bo 

Substituting in equation (10) the dissipation in unit length of the plasma column, cor- 
rect to leading order in ic and (x, is 

0 = 4^^-^, (19) 

where X is the charge per unit length of the plasma. 
For computing the electrostatic energy of the plasma we neglect ellipticity. 

Including ellipticity would lead to higher order corrections in ic. For a plasma col- 
umn of uniform charge density and radius a surrounded by a grounded conducting 
wall of radius b the electrostatic energy per unit length is 

[/ = _i^ + jLln*; (20) 
16TC0    47is0     a 

where X is again the charge per unit length. 
Substituting from equations (19) and (20) in equation (7), and using ^ = 0we 

obtain 

da2 _ 32uic2 

dt  " zX  ' 
The confinement time of the plasma is defined as the time for the central density to 
fall by a certain amount (4), alternatively, for the radius to increase by a certain 
amount. Then from equation (21) it is readily seen that the confinement time scales as 

BQ/\XK
2
 . Recent transport theories (10), supported by experimental observations, in- 

dicate u ~ B0. The confinement time, therefore, scales as B0/K.
2
 . It can be readily 

shown, as in (11), that ic is linearly related to a perturbing potential Vp applied on the 
wall to produce the ellipticity. Therefore, the confinement time is predicted to scale as 

B0V~2 which is in fairly good agreement with B%65V~2 observed in experiments. Our 
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theoretical model, however, cannot explain the dependence of the confinement time on 
density and temperature, observed in experiments. 

DISCUSSION 

Pure electron plasmas in azimuthally symmetric traps have been observed to 
reach a state of global thermal equilibrium in which the plasma rotates as a rigid body 
(12). It has been recognized that non-rigid rotor equilibria would have viscous dissi- 
pation, which causes entropy generation, and, therefore, cannot represent a state of 
thermal equilibrium (13). For a non-circular cylindrical equilibrium, using energy 
balance considerations we have shown that viscous dissipation leads to radial expan- 
sion of the plasma. We have used this to explain some of the features of the scaling 
law for the confinement time of an electron plasma in a trap with applied asymmetry. 

We now discuss some future areas of research relevant to the role of viscous 
dissipation in the relaxation of non-neutral plasma configurations. The expansion of 
an electron plasma due to collision with neutrals has been modelled by Davidson and 
Moore (14) using a fluid model. It would be relevant to carry out an analysis on the 
same lines to compute the evolving density profile of a non-neutral plasma expanding 
due to its own viscosity. However, the presence of derivatives of velocity in the vis- 
cous term, as opposed to the collision term in ref. (14), which is algebraic in the ve- 
locity, makes this task more difficult. 

In non-neutral plasmas, besides azimuthally asymmetric equilibria, viscous 
dissipation could play a significant role in many other situations. For example, in 
toroidally confined non-neutral plasmas where again analytical studies indicate a non- 
rigid rotor equilibrium there would be viscous dissipation. To provide the energy for 
viscous dissipation the plasma would have to either expand in the minor radial direc- 
tion or contract in the major radial direction. Since there are two degrees of freedom 
energy balance alone cannot predict the evolution. The viscous evolution of a toroidal 
non-neutral plasma could form the subject of a future study. Furthermore, in experi- 
ments an initial rapid expansion of the plasma has been observed (4) even in azi- 
muthally symmetric traps. This again could be due to viscous dissipation in evolving 
from a non-rigid rotor equilibrium to a rigid rotor state. In symmetric traps, during the 
evolution to thermal equilibrium, an increase in the plasma temperature has been ob- 
served. This could be due to the energy dissipated by viscosity. 
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Abstract. A pure electron plasma is confined in a Malmberg-Penning trap and its 
confinement and stability properties are studied. Of particular interest are the effects 
that collisions between plasma electrons and background neutral gas atoms have on 
the plasma expansion and on the evolution of the m = 1 diocotron mode. Essential 
features of the m = 1 diocotron mode dynamics in the absence of electron-neutral 
collisions have been verified to behave as expected. The mode frequency, the resistive 
growth rates, and the frequency shift at nonlinearly large amplitudes are all in good 
agreement with predictions. When background neutral gas is injected, the evolution 
of the mode amplitude is found to be sensitive to the gas pressure down to pressures 
of 5 x 10~10 Torr, the lowest base pressure achieved in the EDG device. The evolution 
of the plasma density profile has also been monitored in order to examine the shape 
of the evolving density profile, and to measure the expansion rate. The density profile 
has been observed to expand radially while maintaining a thermal equilibrium profile 
shape, as has been predicted theoretically. The plasma expansion rate is affected by the 
background neutral gas pressure, but the measured expansion rate is generally faster 
than the expansion rate predicted by considering only electron-neutral collisions. 

I    INTRODUCTION 

This paper summarizes recent experimental results [1] on the effects of back- 
ground gas pressure on the expansion of the electron density profile and the dy- 
namics of the m = 1 diocotron mode in the Electron Diffusion Gauge (EDG) ex- 
periment [2,3]. The EDG device [2,3] is a cylindrical Malmberg-Penning trap with 
the following characteristic operating parameters: wall radius Rw — 2.54 cm; end 
electrode potentials -145 V; axial magnetic field in the range 100 G < B < 600 G; 
field variation less than 0.2 %; and base pressures of 5 x 10~10 Torr. The source of 
electrons is thermionic emission from a thoriated tungsten filament (Rj = 1.27 cm), 
which produces a long column of electrons (Lp ~ 15 cm) confined axially between 
the end electrodes, with characteristic line density 107cm_1 < NL < 7 X 107cm-1, 
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and electron temperature T in the range of 0.8 eV. The trap is operated with re- 
peated cycles of inject, hold, and dump phases. After a variable 'hold' time, the 
dump gate potential is pulsed to ground, and the electrons stream out axially along 
the magnetic field lines, permitting a measurement of the electron density profile 
by the collector assembly [2,3]. 

In this paper, we summarize recent experimental results on the effects of back- 
ground neutral gas on the dynamics of the electron plasma in the EDG device, 
including results from the direct measurement of the density profile expansion 
(Sec. II), and the effects of background neutral pressure on the nonlinear dynamics 
of the m = 1 diocotron mode (Sec.   III). 

II    PLASMA EXPANSION IN THE EDG DEVICE 

In a recent calculation [4,5], assuming elastic collisions between the electrons and 
background neutral atoms with collision frequency ven, a macroscopic fluid model 
was used to describe the collisional relaxation of a strongly-magnetized (w2   -C 
LO ) pure electron plasma with isothermal electrons (T =const.), assuming a long, 
axisymmetric plasma column with d/dz = 0 = d/dO. It was shown [4] that the 
electron-neutral collisions cause the electron density profile n(r,z) to relax to a 
dynamically-expanding (thermal equilibrium) profile of the form 

,     ,      ., , {e4>(r,t) - e4>{t) r2      /       NLe2\\ n. n^ = n^{      IT      -J^){1 + 2w)) ■        (1) 

In Eq. (1), c/>(r,z) is the electrostatic potential determined self-consistently from 
Poisson's equation, <j>(t) = <f>(r = 0,i) and h(t) = n{r = 0,t) are the on-axis 
potential and density, respectively, fcß is Boltzmann's constant, — e is the elec- 
tron charge, NL = 2n J0 

w drrn(r,t) = const, is the line density, and (r2) (t) = 

NL~12n JQ 
w drr r2 n(r, t) is the mean-square radius of the plasma column. In addi- 

tion, the mean-square radius (r2) (t) is predicted to increase due to electron-neutral 
collisions according to [4] 

d  , 2>      2NLe2 ven (      2kBT\ 

at meujceojce \       NL& ) 

where ujce = eB/mec is the electron cyclotron frequency. 
The remarkably simple form of the classical predictions in Eqs. (1) and (2) 

are amenable to direct experimental measurement. In recent experiments on the 
EDG device, carried out in a regime where the initial plasma density profile is not 
too irregular (e.g., hollow), it was found [2] that the experimental density profiles, 
measured in repeated hold-and-durnp cycles, fit remarkably well to the expanding 
thermal equilibrium shape in Eq. (1), using one adjustable parameter (the electron 
temperature) at fixed line density NL. There are two notable anomalies in the data 
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[2], however. First, the measured expansion rate [2], although increasing with back- 
ground gas pressure, is anomalously fast in comparison with Eq. (2), due possibly 
(in part) to enhanced radial diffusion caused by field asymmetries [6]. Second, the 
best-fit values of the electron temperature (not measured directly) consistent with 
Eq. (1) and the measured profile shape for n(r,t) remain relatively constant [2] 
(between 0.7 eV and 0.9 eV). This is true even though the relatively large decrease 
[2] in electrostatic field energy (1-2 eV per particle) would be expected to result 
in a sizeable increase in electron temperature, if the electron-neutral collisions are 
elastic and the total plasma energy is conserved [5]. 

Using the detailed measurements [1] of the electron density profiles n(r, t) in the 
EDG device, the mean-square radius, (r2) (t), and electrostatic field energy per 
particle, W/(t), are calculated from 

2TT   fR™ 
<r2)W=^yo      drrSn{r,t), (3) 

97T pRw 1 

(4) 

where NL = 27r J* "' drrn(r,t) is the line density, and —e is the electron charge. 
Typical results are illustrated in Figs. 1 and 2, which show plots of (r2) (t) and 
Wj(t) versus time t at various background helium gas pressures. Although the 
experimental results in Fig. 1 are in qualitative agreement with Eq. (2) (the ex- 
pansion is faster at higher background gas pressures), the absolute rate of expansion 
in Fig. 1 is much faster than that predicted by Eq. (2) (see also Fig. 3), likely due 
to radial transport induced by field asymmetries [6]. As the plasma expands, there 
is a correspondingly sizeable decrease in electrostatic field energy W/(t), as evident 
from Fig. 2. The plots in Fig. 2 correspond to the mean-square radius evolutions 
shown in Fig. 1, and the instantaneous radial density profiles shown in Fig. 2 of 
Ref. 2. 

If the electron-neutral collisions are elastic and the total plasma energy is con- 
served, then the decrease in W/(t) in Fig. 2 would be compensated by a corre- 
sponding increase in the plasma kinetic energy (directed rotational energy and/or 
electron temperature T). For the plasma parameters in the EDG device, it is found 
[1] that the rotational kinetic energy per unit length is small in comparison with 
{3/2)NLkBT. From Fig. 2, setting kBAT = -(2/3)AW/ would give electron tem- 
perature increases approaching 0.9 eV. As noted earlier, this is inconsistent with the 
'best-fit' temperatures [2] inferred from Eq. (1), and the experimentally-measured 
density profiles n(r,t). Indeed, the best-fit values of T show a slight decrease [2] in 
electron temperature as the plasma expands, which is also consistent with Eq. (2) 
and the (slight) downward concavity of the plots of (r2) (t) versus t in Fig. 1 [5]. 
A likely cause for energy loss from the plasma is through inelastic collisions with 
either the majority background helium atoms or other residual gas atoms present. 
The predicted loss of energy by electrons through collisions with the helium atoms 
is minimal, with a characteristic energy-loss time of 4(me/M)ven, where me is the 
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electron mass, M is the mass of a helium atom, and ven is the electron-helium col- 
lision frequency. At a pressure of 1 x 10~8 Torr, the predicted collision frequency 
ven is approximately 10 sec-1, and the characteristic energy transfer time would be 
greater than 102 seconds. Collisions with other trace neutral gas atoms present in 
the system, including polyatomic molecules such as H2, N2, CO, CO2, H2O, etc., 
are much less frequent than collisions with helium atoms, but the energy exchange 
can be far greater. 

While earlier experiments [6,7] have measured the evolution of the central density 
and the total charge trapped over a wide range of background gas pressure P and 
magnetic field strength B, these experiments did not give a detailed characterization 
of the evolution of the density profile n(r,t) as has been done in the EDG device 
[1,2]. Using the experimentally-measured [1,2] density profiles to calculate (r2) (t) 
from Eq. (3), Figs. 3 and 4 show typical experimental results obtained in the 
EDG device in which the measured expansion rate, (d/dt) (r2), is plotted versus 
background helium gas pressure P (Fig. 3) and magnetic field strength B (Fig. 4). 

In Fig. 3, beginning with a base pressure of approximately 3 x IO-10 Torr, purified 
helium gas is injected into the EDG device to increase the pressure in controlled 
amounts. The measurements in Fig. 3 are performed at a constant plasma line 
density NL = 4.0 x 107 cm-1, magnetic field B = 610 G, and temperature T = 
1 eV. If the cause of the plasma expansion were primarily due to electron-neutral 
collisions, the expansion rate would be expected to scale linearly with pressure, and 
the data shown in Fig. 3 would exhibit a decade increase in expansion rate per 
decade increase in pressure. This is clearly not the case. Instead, the expansion rate 
reaches a saturation level at pressures below 10~8 Torr and does not continue to 
decrease at lower pressures. The cause of the saturation is likely due to asymmetry- 
induced radial transport [6], which is independent of background gas pressure. 

The solid curves shown in Fig. 3 give the expansion rate predicted by Eq. (2), 
where a constant offset has been added to the prediction to account for transport 
caused by factors independent of background gas pressure (e.g. asymmetry-induced 
transport). The lower curve gives the predicted expansion rate with no adjustable 
parameters other than the constant offset. The upper curve is a best-fit line allowing 
an adjustable multiplying factor to the predicted expansion rate of Eq. (2). The 
best-fit multiplying factor of 4.2 could be explained by uncertainties in the measured 
background pressure, and the related uncertainties in the electron-neutral collision 
frequency ven. 

The data in Fig. 3 are obtained at a constant magnetic field of 610 G. Varying 
the magnetic field will also change the expansion rates according to Eq. (2), with 
the expansion rate scaling as B~2. Again, this assumes that the expansion is caused 
by electron-neutral collisions. In Fig. 4, the expansion rate is plotted as a function 
of the magnetic field strength, for five different combinations of the background gas 
pressure and the plasma line density. The background gas pressure ranges from 
5 x 10-9 to 5 x 10~8 Torr, and the line density ranges from 2 x 107 to 4 x 107 cm-1. 
The solid lines plotted are proportional to B'3?2. For this range of experimental 
parameters, the scaling of the expansion rates is closer to B~3/2, rather than the 
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B~2 scaling predicted by Eq. (2). 
This discrepancy in the scaling rate with magnetic field may be due to the same 

anomalous factors that contribute to the plasma expansion rate. One possible factor 
mentioned previously is asymmetric errors in the confining fields. This effect has 
been studied [8] by applying a potential to an asymmetric patch in the trap wall. 
Since the trap asymmetry is large, it may be assumed to be the dominant cause 
of plasma expansion. Under these conditions, the plasma expansion rate is found 
[8] to scale as J3-0-65. A combination of asymmetric fields and electron-neutral 
collisions might lead to the scaling observed in EDG. 

Ill    DYNAMICS OF THE m = 1 DIOCOTRON MODE 

The m = 1 diocotron mode [9-12] can be detected through the image charge 
induced in the trap walls. In the EDG device [1-3], one section of the colinear 
cylinders is divided axially into two half-cylinders. As the mode propagates az- 
imuthally, the image charges also propagate azimuthally, causing an electron cur- 
rent to flow across the half-cylinders. In principal, any odd-numbered diocotron 
mode (m = 1,3,...) can be measured, but in the experiments described here, only 
the m = 1 mode has been observed. The image currents are measured by adding 
an impedance between the sector probe and ground [1], resulting in a measurable 
voltage. 
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A    Resistive-Wall Instability 

One of the strongest factors affecting the stability of the m = 1 diocotron mode 
in a Malmberg-Penning trap with a monotonically decreasing density profile is 
resistive-wall destabilization [13]. Physically, a resistive wall dissipates energy, and 
because the m — 1 mode is a negative-energy mode, the mode amplitude and the 
displacement of the column from the cylinder axis grows with characteristic growth 
rate [13] 

1   I2 
1
    Ls     2-2 

1R = -77-w  sin 
IT    Lp 

A0 
~2~ 

R 
1 + {ujRcy (5) 

In the EDG device, the isolated sectors have axial length Ls = 5.08 cm and az- 
imuthal span AÖ = 7r. In Fig. 5, the resistively destabilized m = 1 diocotron mode 
amplitude D/Rw is plotted as a function of time. A resistance R of 3.1 kfi is at- 
tached to the trap wall at the sector opposite to the sector probe, and the mode 
frequency is w/27r = 38.1 kHz. The mode exhibits an exponential rate of increase 
(note the log-linear scale) until saturation occurs at 0.10 seconds. The saturation is 
believed to be due to contact with the trap wall, and is accompanied by a decrease 
in the plasma line density. The initial amplitude of D/Rw ~ 0.02 corresponds to a 
displacement of 0.05 cm, while the saturation amplitude corresponds to 1.25 cm. 
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The m = 1 diocotron mode growth rates have been measured for a wide range of 
resistances, and are shown in Fig. 6. These growth rates are measured while keeping 
a constant diocotron frequency u>/2ir = 38.0 kHz, plasma length Lp = 15.0 cm, and 
capacitance C — 200 pF (= 180 cm in cgs units). The theoretical growth rate given 
by Eq. (5) is also plotted in Fig. 6. For low resistances with u>RC <gi 1, Eq. (5) 
increases linearly with the resistance R. At uRC = 1 there is a roll-over in the 
predicted growth rates, and for u>RC 3> 1, Eq. (5) decreases as R~l. 

It is clear from Fig. 6 that measured growth rates are in excellent agreement with 
the theoretical predictions for all resistances between 17 Q and 106 Q, representing 
2.5 orders-of-magnitude in growth rate. These measurements not only reproduce 
previously published data [13], but extend the data to both a lower and a higher 
range of resistances, and to smaller growth rates. The same level of agreement 
between the experimental data and theoretical predictions is found over the range 
of 102 fi to 106 Q examined previously [13]. Beyond this range, the measured 
growth rates are somewhat larger than the predictions, especially at resistances 
greater than 106 $7. The cause of the discrepancy at large resistances is not known. 
Previous measurements using a potentiometer to vary the resistance resulted in 
even greater discrepancies, so non-ideal effects of the resistors are a possibility. For 
example, the resistors may have an inherent inductance. 

B    Effects of Background Neutral Pressure on the 
Nonlinear Evolution of the m = 1 Diocotron Mode 

We now consider the effects of collisions with background gas atoms on the dy- 
namics of the m — \ diocotron mode. A recent calculation [14] predicted that elastic 
collisions between electrons and background neutrals can induce an instability in 
the (negative energy) m = 1 diocotron mode, with characteristic linear growth rate 
In = VenWoz/bJce where i/en is the electron-neutral collision frequency, coce — eB/mec 
is the electron gyrofrequency, and ui^ = lecNijR2

WB is the diocotron frequency for 
an infinite-length plasma column. The calculation [14] assumed that the expansion 
of the plasma is sufficiently slow that the radial density profile can be regarded as 
stationary on the time scale of the instability. In the experiments on the EDG de- 
vice, however, the expansion rate is observed to be faster than that expected due to 
electron-neutral collisions alone [2,3], and also faster than the predicted characteris- 
tic exponentiation time of the instability. Although providing initial motivation for 
the expansion measurements, this theoretical model [14] is not expected to predict 
correctly the behavior of the diocotron mode in the EDG device. 

The effects of electron-neutral collisions on the m = 1 diocotron mode evolution 
are studied in the EDG device by injecting purified helium gas into the vacuum 
vessel while monitoring the evolution of the m = 1 diocotron mode. The amplitude 
evolution for 11 different background gas pressures is shown in Fig. 7, for a con- 
stant magnetic field strength of 612 G, and diocotron mode frequency of 55 kHz. 
The solid and dotted lines are used to distinguish between pressures, and at each 
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pressure 5 measurements of the mode evolution are shown. The amplitudes plotted 
are normalized to the initial amplitude for clarity. The frequencies are constant 
as a function of time (to within 1%) even as the mode amplitude decays to zero, 
indicating that no charge is lost during the measured evolution. 

From Fig. 7, a non-exponential damping of the m = 1 diocotron mode is observed, 
which becomes stronger as the background neutral pressure is increased. The solid 
lines labeled "a" show the amplitude evolution at the base pressure of 5 x 10~10 Torr. 
A slight increase in the mode amplitude is evident initially, possibly due to a small 
wall resistance, with an equivalent exponential growth rate of less than 0.1 sec""1. 
The "dotted" lines labeled "b" show the amplitude evolution after helium has been 
injected to increase the measured pressure to 6 x 10~10 Torr (N2 equivalent), a 
difference of only 1 x 10-10 Torr from the base pressure. At this pressure, the 
diocotron mode evolution is measurably different, with good rcproducibility, and 
with the amplitude decaying to nearly zero by 10 seconds. As the background gas 
pressure is increased further, the diocotron mode damping rate becomes greater. 

The sensitivity of the diocotron mode evolution to changes in the background 
gas pressure of as little as 1 x 10~10 Torr is somewhat surprising in view of the ex- 
pansion data in Sec. II, where it appears that for pressures lower than 1 x 10-8 Torr 
the plasma expansion rate is independent of pressure. However, the data in Fig. 3 
required many hundreds of repeated plasma shots to obtain each data point, and 
variations in the experimental parameters over the long times necessary to obtain 
the data obscure the expansion rate dependence on the background gas pressure 
at very low pressures. By contrast, the evolution of the diocotron mode can be 
measured in a single plasma shot, and therefore, small changes in the background 
gas pressure can be more readily measured while keeping other experimental pa- 
rameters constant. 

To conveniently characterize the non-exponential damping shown in Fig. 7, the 
time T for the mode amplitude to decay to one-half of its initial amplitude is 
plotted as a function of the background gas pressure P in Fig. 8. Also shown 
is the time for the amplitude to decay to one-tenth of its initial amplitude. A 
power law fit is performed on both sets of data which indicates that the time r is 
approximately proportional to P-1/2. The non-exponential rate of damping and the 
P~ll2 scaling of r are not yet understood. The non-exponential rate of damping 
could be explained if the damping were due to plasma proximity with the trap 
walls. The amplitude evolution would then be expected to look similar to those in 
Fig. 7, with very little decay initially because the plasma is far from the trap walls, 
and more rapid decay later in time as the plasma expansion brings the plasma 
closer to the trap walls. However, since the plasma is expected to expand at a rate 
proportional to the background gas pressure P, the time for the mode to damp 
would be expected to be proportional to P-1. To investigate the cause of the mode 
damping further, more experiments are needed which measure the density profile 
evolution during the mode damping. 

In any case, from Figs. 7 and 8, the strong sensitivity of the evolution of the 
m = 1 diocotron mode to the background neutral gas pressure has been clearly 



demonstrated in the EDG device. 

IV    CONCLUSIONS 

In this paper, we have described the effects of background neutral gas on the 
plasma dynamics in the EDG device. The results presented in Sec. II, based on 
direct measurements of the expanding density profile n(r,t), described how the 
plasma expansion rate scaled with background gas pressure P (Fig. 3) and magnetic 
field strength B (Fig. 4). In Sec. Ill, it was shown that the evolution of the m = 1 
diocotron mode exhibits a strong sensitivity to the background gas pressure P 
(Fig. 7), and that the time scale for damping of the diocotron mode scales as P~1/2 

(Fig. 8). 
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Abstract An annular version of the Malmberg-Penning trap is described in which electrons are 
confined between concentric cylinders. The space within the inner cylinder contains conductors 
for adding an azimuthal magnetic field and a solenoid for inducing an azimuthal electric field. 
Experiments with potential differences from 0 to 90 volts applied to the cylinders show that the 
mobility transport may be varied or made smaller than the diffusive transport. The mobility 
transport is shown to be independent of the azimuthal magnetic field. The diffusive transport is 
shown to scale linearly with pressure and inversely as the square of the axial field. The 
azimuthal electric field made by changing the magnetic flux in the solenoid results in a radial 
displacement of the electrons such that they remain on surfaces enclosing constant flux. 

INTRODUCTION 

An annular Malmberg-Penning trap (1) is described in which a nonneutral 
plasma of electrons is confined between concentric cylinders. This geometry makes 
possible several new types of confinement experiments. First, the bias potentials on 
the inner and outer cylinders may be used to adjust the radial electric field, whereas in 
the standard trap the radial electric field is determined by the electron density. This 
feature allows the transport by mobility to be varied or to be made smaller than the 
transport from diffusion. Second, conductors may be placed within the inner cylinder 
to create an azimuthal magnetic field. The combined axial and azimuthal fields result 
in helical field lines and helical bounce orbits. There is an additional electric drift in 
the end regions which is radially outward at one end of the device and inward at the 
other. These drifts give the bounce orbits a finite width which is analogous to the 
banana width of orbits of the tokamak and the particle transport is analogous to the 
neoclassical transport of the tokamak (2). Third, a solenoid may be placed within the 
inner cylinder and the flux within it changed to create an azimuthal electric field. The 
resulting E x B drift results in a radial displacement of particles which may be studied 
or used to create initial plasma profiles which are separated from the wall. 
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THE APPARATUS 

The device is shown schematically in Fig. 1. The confinement volume is the 
annular space between two concentric cylinders of equal length. An axial magnetic 
field is applied by Helmholtz coils. Annular grids at the ends of the cylinders are 
biased negatively for electrostatic confinement. Current in conductors along the axis 
creates an additional azimuthal field. The field lines are then helical and the flux 
surfaces are cylinders. The azimuthal field has a radial gradient and there are 
additional gradient and inertial drifts which are both axial and azimuthal. In the end 
regions where there is a strong axial electric field, there is a drift from Ez * Be which 
is radial. This drift is inward at one end of the device and outward at the other end 
because Ez changes sign at the midplane. The drift displacement is the same at each 
end thus the orbits have a finite width when projected onto either the r-z plane or the 
r-8 plane. These orbits are illustrated by the numerical simulations in Fig. 2. 

Construction details of the trap have appeared previously (3) and are briefly 
summarized here. The device is contained in a standard 15 cm diameter pipe cross 
pumped by a turbomolecular pump to a base pressure of <10"7 Torr. Helium may be 
added by means of a leak valve. The inner and outer cylinders of the trap have 
diameters of 25.4 and 48 mm. Their ends are at z = ± 75 mm and the negatively 
biased grids are at ± 87 mm. An axial field of 0-18 mT is made by water-cooled 
Helmholtz coils and an azimuthal field of 0-15 mT is made by a set of six rectangular 
coils fabricated from solid copper rod. These pass within an inner vacuum wall which 
has a radius of 38 mm. A pulsed azimuthal electric field is created by a solenoid 
within the inner wall. This solenoid has 220 turns with a winding radius of 17 mm 
and a length of 25 cm. It is operated from a supply which generates rectangular pulses 
of 0-100 V and 0-100 A. The current rises to a relatively constant value in 0.5 ms 
which is the L/R time of the coil and the duration of the azimuthal electric field. 

The density profile may be measured by dumping the electrons onto a set of 
five annular electrodes of equal width which are connected to integrators. Electrons 
are dumped by removing the bias potential from the grid at +87 mm. Electrostatic 
pickup from the gate pulse is reduced by having a grounded grid between the gated 
grid and the annuli. The remaining pickup is subtracted using signals recorded with 
no electrons in the trap. The inner and outer cylinders are connected to amplifiers 
which measure the collected current. Bias potentials are applied to the cylinders by 
means of batteries in series with the inputs of these amplifiers. 

The trapped electrons are secondaries created by passing energetic electrons 
through the trap. The characteristic energy of secondary electrons from helium is 15 
eV (4). The energetic electrons are from a heated tungsten filament which is biased to 
-150 V. The filling is stopped by removing the bias potential from the filament. There 
is an upper bound to the density determined by the depth of the potential well. Near 
the density limit, oscillatory signals are seen which may indicate the onset of 
diocotron modes (5). In the experiments reported below, the density is kept below this 
limit. 

291 



FIELD COILS 

SOLENOID 

ANNULI 

GRIDS 

OUTER 
CYLINDER 

ORBIT 

FILAMENT 

FIGURE 1. Schematic diagram of the annular trap showing the concentric cylinders, end grids, a 
particle orbit projected onto the r-z plane, the annuli for collecting dumped electrons, the conductors 
near the axis for creating an azimuthal magnetic field, the solenoid for creating an azimuthal electric 
field, and the filament for creating trapped electrons by impact ionization of helium. 

Perspective view      r-z projection r-6 projection 

FIGURE 2. Simulated particle trajectories in the annular trap. The plot is made in a frame rotating with 
the local E x B drift velocity. The orbit fails to close because of the azimuthal gradient and inertial 
drifts. The plot is for an energy of 6 eV (2 eV in each degree of freedom), an axial field of 2 mT and an 
azimuthal field of 2 mT The fields are artificially low to make the orbit scale lengths visible. 
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EXPERIMENTS 

Mobility driven by an applied electric field 

Mobility transport in the trap is most easily derived from conservation of the 
azimuthal canonical angular momentum, 

Pe= r(q/4e + mve), (1) 

where r is the radial coordinate, AQ = 14 Bz r is the vector potential for a uniform axial 
field Bz, and q and m are the charge and mass of an electron, respectively. Collisions 
with neutrals cause a loss of Pe at the average rate rvmve where v is the momentum 
transfer collision frequency and ve is the azimuthal drift speed E, /Bz. The electron 
Larmor radius is small in comparison with the radius of the device thus the 
mechanical angular momentum, rmve, is much smaller than the electromagnetic 
momentum rqAe. This implies that a loss of angular momentum must come from the 
electromagnetic part of Pe which results in a radial drift velocity, 

vtl = dr/dt = vmEr/qBz
2 = uEr, (2) 

where v^ is the mobility drift velocity and \i - vm /qBz
2 is the mobility coefficient. A 

mobility confinement time, x^, may be defined as the half-width of the plasma 
annulus, a, divided by the mobility drift velocity, 

Tn = aqBz
2/vmEr. (3) 

Thus we expect the confinement time to scale inversely with the applied electric field. 
The mobility transport was varied by grounding the inner cylinder, biasing the 

end grids to -6 V and increasing the voltage on the outer cylinder in steps of 9 V 
from 27 V to 90 V. The decay in the current to the outer cylinder was recorded, Fig. 
3a, after the filling was stopped. The axial field was 14 mT and the helium pressure 
was 5 x 10"5 Torr. The data were fit to an exponential curve and the e-folding times 
were found. The loss rates, Fig. 3b, show the expected linear scaling of the loss rate 
with electric field. Other data have shown that the e-folding times scale as the square 
of the magnetic field and scale inversely with the pressure (5). 

The integrated current to the outer cylinder gives an initial charge of 145 pC. 
This divided by the volume of the trap gives a confined density of 1.2 x 106 cm"3. 
This density is about a factor of four below the density which would give a potential 
drop which matches the 36 V applied between the inner and outer cylinders. 
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Mobility with an azimuthal magnetic field 

The azimuthal field adds to the absolute value of the field and one might 
expect that the mobility with the combined fields would be u = vm/q|B|2. The 
derivation of u. in the preceding section, however, shows that Be does not enter. The 
correct expression can be referred to as the neoclassical mobility because it applies to 
axisymmetric systems like the tokamak with drifts orthogonal to flux surfaces. In the 
experiment, the mobility was shown to be independent of the azimuthal field by 
recording the current to the outer cylinder with the axial field fixed at 5 mT and the 
azimuthal field increased in steps from 0 to 15 mT. The absolute value of the field 
was increased by more than a factor of three, but the decay rates. Fig. 4, are nearly 
indistinguishable, indicating that the mobility is independent of Be. 

b) 

20 40 60 80 

Cylinder potential [V] 

100 

FIGURE 3. a) The current to the outer cylinder as a function of time for bias voltages of 27, 36, 45, 63 
and 90 volts. The higher bias voltage results in the shortest decay time. For clarity, data sets at 
intermediate voltages were not plotted, b) The decay constant, 1/t, as a function of cylinder bias 
potential. The data show that the loss rate scales linearly with the potential difference applied to the 
cylinders. The line is a linear regression. 

100 

Time, ms 

FIGURE 4. Four superimposed traces of current to the outer cylinder as a function of time with Bz = 5 
mT and with Be = 0, 5, 10, and 15 mT. The decay is independent of the azimuthal field. The potential 
applied to the outer cylinder is 36 V and the helium pressure is 1 x 10*4 Torr. 
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Confinement limited by diffusion 

Transport by mobility may be nearly eliminated by placing both cylinders at 
ground potential. There will remain some mobility transport driven by the space 
charge electric field but this can be kept negligible by limiting the density. The 
classical diffusion coefficient is D = V2 rL

2 v, where rL is the thermal Larmor radius. 
The confinement time determined by diffusion is approximately 

xD = a2/D = a2q2Bz
2/vmT, (4) 

where T is the electron temperature in energy units. The ratio of the diffusive time 
scale to the mobility time scale is 

TD/T^ 2qaEr/T = |q|U/T, (5) 

where U = -2aEr is the potential difference between the cylinders. Thus if the 
potential difference is much smaller than the mean electron energy the transport is 
dominated by diffusion rather than mobility. 

Diffusive transport was examined experimentally by placing both cylinders at 
ground potential and biasing the grids to -30 V. The decay in density was measured 
by dumping the electrons onto the annuli with delay times that were successively 
longer, Fig. 5. For this measurement, the charge deposited on two annuli near the 
center was used. The decay rates are plotted in Fig. 6a as a function of pressure at 18 
mT. The data show the expected linear dependence upon collision frequency, 
however, the linear regression does not pass through the origin which indicates an 
additional loss mechanism. The decay time plotted as a function of the square of the 
magnetic field, Fig. 6b, shows the expected linear dependence. 

FIGURE 5. Example of the diffusive mode of operation. Displayed is the output of an integrator 
connected to two annuli midway between the cylindrical walls. Ten traces are superposed and each is 
made with a longer hold time. The magnetic field is 14 mT and the pressure is 3 x 10"6 Torr. The 
vertical scale is the charge indicated by the peak of the signal. 
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FIGURE 6. a) The decay rate, 1/x, plotted as a function of pressure shows that the diffusivity increases 
linearly with collision frequency, b) The decay time, T, plotted as a function of the square of the 
magnetic field shows the expected linear scaling. The pressure is 2 x 10~5 Torr. 

The e-folding times calculated from equation (4) using the characteristic 
energy of secondaries, 15 eV, is approximately a factor of two longer than the 
measured value. This discrepancy maybe due to the electron distribution falling more 
slowly with energy than a Maxwellian distribution. The charge dumped onto the 
annuli corresponds to a density of approximately 3 x 105 cm3. This density gives a 
space charge potential of less than one volt thus transport by mobility is negligible. 

Displacement by an azimuthal electric field 

The drift rate caused by application of E0 may be found from conservation of 
canonical angular momentum. The magnetic vector potential may be divided into two 
parts, Aeo = Vi rB2 which arises from the uniform axial confining field Bz, and Aes = 
Vi (rs

2/r)Bs which arises from the field Bs within the solenoid. The solenoid has radius 
rs < r thus at the particle's location the solenoid current changes Ao and Bz changes 
negligibly. Angular momentum conservation requires that 

Pe = r {mve + Vt q [r Bz + (rs
2 /r) Bs ]} (6) 

be constant. One may average over the rapid cyclotron motion of the particle in which 
case r becomes the guiding center location and ve becomes the azimuthal component 
of the guiding center velocity. The mechanical momentum rmvo is much smaller than 
the electromagnetic part of the momentum, rqAe, thus conservation of Pe is 
equivalent to rAe remaining constant at the particle's location. For axisymmetric 
systems, the flux, v|/(r), enclosed at a radius r is related to the vector potential through 
Ae = v|/(r) /27tr, thus conservation of rAe is equivalent to the particle guiding center 
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remaining on a surface enclosing a constant flux. Conservation of enclosed flux gives 
a displacement that satisfies 

rf
2 = ri2-AT/itBz (7) 

where rf is the final radial position of the particle, r, is the initial position and A*F = 
7irs

2Bs is the flux change. 
The displacement was measured by loading the trap, increasing the current in 

the solenoid from zero to a fixed value, and then dumping the electrons onto the 
annuli. This was repeated with increasing values of the current. The polarity of the 
current was chosen to decrease the net flux which results in an outward displacement. 
The data in Fig. 7 show that the density profile is displaced to larger radii as the 
current is increased. The line in the figure shows the boundary calculated from 
equation (7). The boundary should pass the first annulus at 18 A and the last at 54 A. 
There is agreement between the expected and calculated values. Similar results are 
obtained when the polarity of the solenoid is reversed so that the outer boundary of 
the plasma is displaced inward. 

Current [A] 

FIGURE 7. The four pedestals indicate the charge in arbitrary units dumped onto four annuli spanning 
30 mm to 48 mm in radius. The current is that in the solenoid at the time of the dump. The pedestals of 
zero height indicate that the plasma boundary has moved past that annulus. The inner annulus is in the 
foreground and the outer is in the background. The white line is the inner plasma boundary expected 
from conservation of enclosed flux. 
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SUMMARY AND CONCLUSION 

A new version of the Malmberg-Penning trap has been constructed in which 
the plasma is contained between concentric cylinders. The potential difference 
between the cylinders has been varied to demonstrate scaling of mobility transport 
with electric field. The space interior to the inner cylinder contains conductors for 
creating an azimuthal magnetic field and a solenoid for changing the azimuthal vector 
potential without altering the magnetic field within the plasma volume. Experiments 
with the solenoid have shown that the drift from the induced azimuthal electric field 
results in a displacement such that the electrons remain on surfaces enclosing constant 
flux. The azimuthal magnetic field allows experimental tests of several aspects of 
neoclassical transport theory. The first such experiment has shown that the mobility is 
independent of the azimuthal field. Other experiments which should be possible 
include the demonstration of the Ware drift (6), neoclassical diffusion, and the 
transition from neoclassical to classical diffusion as the collision time is made shorter 
than the axial bounce time (2). 
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Abstract. Pure electron plasma deform into ellipses when subjected to stationary, 
£ = 2 potential perturbation on the trap wall. At first, the plasma's ellipticity is 
proportional to the strength of the potential perturbation. Once the perturbation is 
increased beyond a critical value, the plasma equilibrium bifurcates into two off-axis 
equilibria and a saddle. At the bifurcation point, the diocotron frequency dips to 
near zero. The diocotron orbits become very elliptical just below the bifurcation, and, 
after the bifurcation, split into three classes delimited by a separatrix: two classes 
surrounding the individual new equilibria, and one class surrounding both equilibria. 
The mode frequencies slow near the separatrix, and the trajectories themselves slow 
near the saddle at the origin. Interaction with the elliptical mode causes the diocotron 
mode to spontaneously and reversibly jump across the separatrix. 

When a pure-electron plasma confined in a Malmberg-Penning trap is subjected 
to a V cos 20-like voltage perturbation along the trap wall, it deforms into an ellipse. 
The voltages are applied to electrically-isolated sectors in the trap wall. The plasma 
is stable, stationary in the lab frame and reasonably long-lived. Curiously, negative 
voltages attract the plasma, while positive voltages repel the plasma. Thus, in the 
above figure the plasma is squeezed away from the +17 V applied to the left and 
right sectors. 

Some years ago, we studied the effects of small perturbations [1,2]. Recently we 
extended the analysis to highly deformed plasmas [3,4]. The analysis predicts that 
as the perturbation V is increased, the plasma will become more elliptical. When 
V exceeds a critical voltage, the plasma equilibrium will bifurcate, and the plasma 
will move off center. This classic pitchfork bifurcation [5] is illustrated in Fig. 3. 

Trap construction asymmetries favor one of the post bifurcation equilibria over 
the other, but the effect of these asymmetries can be tuned out by applying a small 
voltage to the top or bottom sectors or by making the left and right sector voltages 
slightly different. We chose to tune by applying a voltage Vb = ßV to the bottom 

x> joel@physics.berkeley.edu 
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FIGURE 1. Pure electron plasma deformed into an ellipse by the application of +17 V to the 
side sectors. The —0.046 V applied to the bottom sector is a balancing voltage, described later in 
the poster. 
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FIGURE 2. Schematic of the trap showing the electrically isolated sectors. 

sector. Typically the balance proportionality \ß\ is less than 0.005. The tuning can 
be quite sharp; changing ß by less than 0.0015 will consistently send the plasma 
up or down. For example, in Fig. 3, changing ß from —0.0027 to -0.0031 changed 
the selected equilibrium. Over the course of a few days, however, the equilibrium 
ß can drift. 

The plasma's center of charge is plotted as a function of the perturbation voltage 
in Fig. 4; the ellipticity is plotted in the succeeding figure. The theory curves 
in both graphs are derived from a second-moment Hamiltonian model given by 
Chu [2,4], with an added magnetron term. Unfortunately, Chu's equations are for 
flat-top, infinite-length plasmas, and the experimental plasmas are neither. Conse- 
quently we fit the critical voltage and the initial slope of the ellipticity curve to get 
the theory curves shown. The discrepancy in the ellipticity curve for large voltages 
is probably due to higher order moments. Such moments are increasingly impor- 
tant as the plasma approaches the wall, as is clearly visible for the V = 28.3 V 
plasmas in Fig. 3. 

An important prediction of the theory is that the diocotron frequency goes to 
zero at the bifurcation. The £ = 1 diocotron mode is driven by the plasma image 
charge fields, but, at the bifurcation, these fields are canceled by the fields from 
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FIGURE 3. Ellipse bifurcation. 
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FIGURE 4. Measured (triangles) and predicted (line) center of charge (normalized by the wall 
radius) of the ellipse as a function of the perturbation voltage. The bifurcation occurs at 17.67 V. 
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FIGURE 5. Measured (dots) and predicted (line) ellipticity as a function of the perturbation 
voltage. 

the perturbation voltage.   Consequently the diocotron stalls, 
small-amplitude diocotron frequency should be 

/   =   f0}Jl - V/Vc 

=   2f0(V/Vcf
2Jl vjv 

V <vc 

v>vc, 

Theoretically, the 

(1) 

where /0 is the unperturbed diocotron frequency. As shown in Fig. 6, this prediction 
is well verified by our experiments. However, the experimental diocotron frequency 
does not go precisely to zero at the bifurcation, as it is predicted to by Eq. (1). 
The minimum frequency is a sharp function of the balance proportionality (see 
Fig. 7.) When detuned, nonlinearities dropped in the analysis leading to Eq. (1) 
keep the diocotron frequency finite (see Fig. 7). The effects of nonlinearities are 
magnified by the shape of the diocotron orbits near the bifurcation, which, as shown 
in Fig. 8, becomes extremely elliptical. Even low amplitude orbits sample the field 
nonlinearities found away from the origin. 

As shown in Fig. 9, the post bifurcation diocotron orbits exhibit all the phase- 
space features associated with a 2-D bifurcation [6]: 

Classically, the separatrix between the tear-drop and peanut orbits is inviolable. 
We find, however, that if we drive the diocotron mode too close to the separatrix, 
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FIGURE 6.  Diocotron frequency as a function of the perturbation voltage.   The measured 

values /o = 47.6 kHz and Vc = 17.67 V are used to calculate the theory line. 
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FIGURE 7. Minimum diocotron frequency as a function of the balance proportionality ß. (The 

best ß, +0.005, has drifted from the ß observed in Fig. 3). 

+17.4V/ 
A 

\J f + 17.4V 

+0.0 IV 
FIGURE 8. Diocotron orbits just below bifurcation. Proceeding outwards, the orbit frequencies 

are 4, 8, 16 and 16 kHz. The ellipticity of the 4 kHz orbit is almost 28. 

the plasma can spontaneously jump between the three orbit groups.  The jumps 
are not repeatable, and occur at random intervals. All the tear-drop orbits in the 
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FIGURE 9. Diocotron orbits above bifurcation showing tear-drop shaped orbits around the two 

equilibria (marked by +'s) and peanut shaped orbits surrounding both equilibria. The signal on 

the bottom sector, Vj,, is tuned to select the upper or lower equilibria. The origin is a saddle, 

and the separatrix is somewhere between the 25 kHz and 16 kHz orbits. Note how the orbital 

frequencies decrease near the separatrix. The circles denote 1 /xs intervals along the orbit. For 

clarity, the hash marks are suppressed on the upper half of the 16 kHz orbit, the lower 25 kHz 

orbit, and on both the 38 kHz orbits. 

sequence have roughly the same frequency, implying that the tear-drop orbit am- 
plitudes do not change. The peanut orbit frequencies are approximately half the 
tear-drop orbit frequencies.   The jumps can continue for over fifty milliseconds, 

Time (us) 
FIGURE 10. Signal induced on the upper sector by the plasma charge. The magnitude and sign 

of the signal depends on the position of the plasma, with large negative-going signals indicating 

that the plasma is close to the upper sector, and smaller positive-going signals indicating that the 

plasma is far from the upper sector. 

making many transitions therein, so dissipation does not seem to be the cause of 
this phenomenon. We suspect that the jumps are due to an exchange of energy 
between the diocotron mode and the elliptical mode; strictly speaking, the separa- 
trix only exists for the two dimensional (xc, yc) system, not for the full (xc, yc, A, </>) 
system. Previous experiments on adiabatic invariants [7] two-vortex stability [8] 
and on autoresonance [9] have demonstrated that the diocotron mode is very well 
decoupled from the elliptical mode.  Effectively irreversible interactions [10] have 
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been observed between the diocotron and elliptical modes, but this may be the first 
time that any reversible coupling has been observed. 

We thank J.S. Wurtele for his help with this problem. This work was supported 
by the Office of Naval Research. 
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SECTION 5 

CHARGED PARTICLE BEAMS 



Intense Nonneutral Beam Propagation 
Through a Periodic Focusing Quadrupole 

Field I — A Compact Paul Trap 
Configuration to Simulate Beam 

Propagation Over Large Distances 

Ronald C. Davidson, Hong Qin, and Gennady Shvets 

Plasma Physics Laboratory 
Princeton University, Princeton, New Jersey 08543 

Abstract. This paper considers an intense nonneutral charged particle beam propa- 
gating in the z-direction through a periodic focusing quadrupole magnetic field with 
transverse focusing force, — Kq(s)[xex — yey], on the beam particles. Here, s = ßbd 
is the axial coordinate, (7t, - l)mbC2 is the directed axial kinetic energy of the beam 
particles, qt, and mt, are the charge and rest mass, respectively, of a beam particle, and 
the oscillatory lattice coefficient satisfies Kq(s + S) = Kq(s), where 5 is the axial peri- 
odicity length of the focusing field. The particle motion in the beam frame is assumed 
to be nonrelativistic, and the Vlasov-Maxwell equations are employed to describe the 
collisionless nonlinear evolution of the distribution function fb(x,y,x',y',s) and the 
(normalized) self-field potential ip{x,y,s) = qt,<j>{x,y,s)/7%mbßb

2c2 in the transverse 
laboratory-frame phase space (x,y,x',yl), assuming a thin beam with characteristic 
radius r;, <C S. It is shown that collective processes and the nonlinear transverse 
beam dynamics can be fully simulated in a compact Paul trap configuration in which 
a long nonneutral plasma column (L > rp) is confined axially by applied dc volt- 
ages V — const, on end cylinders at z = ±L, and transverse confinement in the 
x — y plane is provided by segmented cylindrical electrodes (at radius rw) with ap- 
plied oscillatory voltages ±Vb(i) over 90° segments. Here, Vo(t + T) = Vb(i), where 
T — const, is the oscillation period, and the oscillatory quadrupole focusing force on a 
particle with charge q and mass m near the cylinder axis is — mKq(t)[xex — yey], where 
Kq{t) = 8qVo{t)/Trmr^. This configuration offers the possibility of simulating intense 
beam propagation over large distances in a compact configuration which is stationary 
in the laboratory frame. 

I    INTRODUCTION 

Periodic focusing accelerators and transport systems [1-6] have a wide range of 
applications ranging from basic scientific research, to applications such as heavy 
ion fusion, spallation neutron sources, and nuclear waste treatment, to mention a 
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few examples. Of particular interest, at the high beam currents and charge den- 
sities of practical interest, are the combined effects of the applied focusing held 
and the intense self fields produced by the beam space charge and current on de- 
termining detailed equilibrium, stability, and transport properties [1]. Through 
analytical studies based on the nonlinear Vlasov-Maxwell equations, and numeri- 
cal simulations using particle-in-cell models and nonlinear perturbative simulation 
techniques, considerable progress has been made in developing an improved un- 
derstanding of the collective processes and nonlinear beam dynamics character- 
istic of high-intensity beam propagation [7-24] in periodic focusing and uniform 
focusing transport systems. Nonetheless, it remains important to develop an im- 
proved basic understanding of the nonlinear dynamics and collective processes in 
periodically-focused intense charged particle beams, with the goal of identifying 
operating regimes for stable (quiescent) beam propagation over large distances, 
including a minimum degradation of beam quality and luminosity. 

In this paper, we present in Sec. II a brief summary of the nonlinear Vlasov- 
Maxwell equations describing the collective processes and nonlinear transverse dy- 
namics of a thin (r(, <C S), intense charged particle beam propagating through a 
periodic focusing quadrupole magnetic field with axial periodicity length S = const. 
In Sec. Ill, a compact Paul trap configuration is described which fully simulates 
the equivalent collective processes and nonlinear transverse beam dynamics in a 
periodic focusing quadrupole transport system. Unlike a Malmberg-Penning trap 
[25-28], which provides transverse confinement of the plasma particles by an ap- 
plied axial magnetic field Boez, a Paul trap configuration [29,30] provides transverse 
confinement in the x — y plane by oscillating voltages applied to electrodes external 
to the plasma. The idea of using a single-species trap to model periodically-focused 
beam propagation has previously been discussed by Okamoto and Tanaka [31]. The 
emphasis of their work is on solenoidal confinement [31], whereas the present anal- 
ysis focuses on periodic quadrupole confinement. In addition, the present analysis 
treats the case of arbitrary (but periodic) time dependence of the focusing potential. 

To briefly summarize, a long nonneutral plasma column (L S> rp) is confined 
axially by applied dc voltages V = const, on end cylinders at z = ±L, and trans- 
verse confinement in the x — y plane is provided by segmented cylindrical electrodes 
(at radius rw) with applied oscillatory voltages ±V0(t) over 90° segments. Here, 
Vo(t + T) = Vo(t), where T = const, is the oscillation period, and the oscillatory 
quadrupole focusing force on a particle with charge q and mass m near the cylinder 
axis is — m,Kq{t)\xex — yey], where Kq(t) = 8qVo(t)/'irrnr^. This configuration offers 
the possibility of simulating intense beam propagation over large distances in a 
compact configuration which is stationary in the laboratory frame. 

This is the first of a two-paper sequence. The second paper [32] applies a recently- 
developed canonical transformation and Hamiltonian averaging formalism [23] to 
transform away the rapidly oscillating quadrupole focusing contributions to the 
laboratory-frame Hamiltonian H±(x,y,x,y,t). The analysis leads to a new Hamil- 

tonian 1-L±(X,Y,X,Y,l) in the 'slow' transformed variables (X,Y,X,Y).   The 
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transformed Hamiltonian has constant transverse focusing coefficient K/9 = const. 
(independent of £), and the corresponding transverse focusing force is isotropic in 
the X — Y plane. This leads to enormous simplification in the analysis of the non- 

linear Vlasov-Poisson equations for the distribution function F(X,Y,X,Y,t) and 
self-field electrostatic potential </>a(X,Y,t) in the transformed variables. 

II    THEORETICAL MODEL FOR INTENSE BEAM 
PROPAGATION THROUGH A PERIODIC 

FOCUSING QUADRUPOLE FIELD 

We consider a thin, intense charged particle beam with characteristic radius n, 
and average axial momentum ^rribßbC propagating in the ^-direction through a 
periodic focusing quadrupole magnetic field with axial periodicity length S. Here, 
rb S> S is assumed, (76 — l)mt,c2 is the directed axial kinetic energy of the beam 
particles, 7t = (1 — ß2)-1^2 is the relativistic mass factor, V& = ß\,c is the av- 
erage axial velocity, <#, and mj, are the particle charge and rest mass, respec- 
tively, and c is the speed of light in vacuo. In addition, the particle motion in 
the beam frame is assumed to be nonrelativistic. We introduce the scaled time 
variable s = ßbd, and the (dimensionless) transverse velocities x' = dx/ds and 
y' — dy/ds. Then, within the context of the assumptions summarized above, the 
collisionless nonlinear beam dynamics in the transverse, laboratory-frame phase 
space (x,y,x',y') is described self-consistently by the nonlinear Vlasov-Maxwell 
equations for the distribution function fb(x, y, x', y', s) and the normalized self-field 
potential ip(x,y,s) — qb(ß(x,y,s)/^mbßbC2, where <f>(x,y,s) is the electrostatic 
potential. For a thin beam (rb <C S), the transverse focusing force on a beam 
particle produced by the periodic quadrupole field can be approximated over the 
cross-section of the beam by 

Fjoc = -Kq(s)[xex - yey] , (1) 

where (x,y) is the transverse displacement of a particle from the beam axis, and 
the 5-dependent focusing coefficient Kq(s + S) = Kq{s) is defined by 

K (s) =   qbB'i^ (2) 
' •ybmbßbC2 

Here, the field gradient B'q(s) is defined by B'q(s) = (öB«/öj/)(0,o) = (dB*/dx)m. 
Note from Eq. (2) that Kq(s) has the dimensions of (length)- . In terms of the 
normalized self-field potential i/>(x,y,s) = qbcf>{x,y,s)/jb'mbßbC2 and the distribu- 
tion function fb(x,y,x',y',s), the nonlinear beam dynamics and collective pro- 
cesses in the laboratory-frame transverse phase space (x,y,x',y') is described self- 
consistently by the Vlasov-Maxwell equations [1,23] 
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' d       ,d       ,d      (   . ,      ÖV'\   ö -*u»+^)£}* = 0'<3> 
and 

Here, ni,(x,y,s) = / dx'dy'fb is the number density of the beam particles. Moreover, 
the laboratory-frame Hamiltonian H±(x,y,x',y',s) for transverse single-particle 
motion consistent with Eqs. (3) and (4) is given (in dimensionless units) by 

H±(x, y, x', y', s) = ~{x'2 + y'2) + -Kq(s)(x2 - y2) + i>(x, y, s) . (5) 

The nonlinear Vlasov-Maxwell equations (3) and (4) are rich in physics content 
and are widely used to describe the stability and transport properties of an in- 
tense nonneutral beam propagating through a periodic focusing quadrupole field 
Kq(s + S) — Kq(s). While considerable progress has been made in analytical and 
numerical studies of Eqs. (3) and (4) [7-24], detailed calculations of the equilib- 
rium and stability behavior are generally complex because the quadrupole focusing 
coefficient nq(s) is both s-dependent and oscillatory, with /0 dsnq(s) = 0 for a peri- 
odic focusing lattice. Indeed, as described in Ref. 23, only recently has a canonical 
transformation been developed that utilizes an expanded generating function that 
transforms away the rapidly oscillating terms in Eq. (5), leading to a Hamiltonian 
in the transformed variables, H{X,Y,X',Y', s) = {l/2){X'2 + Y'2) + (l/2)Kfq{X2 + 
Y2) + ip(X, Y,s), where Kfq — const, (independent of 5). 

Ill    COMPACT TRAP CONFIGURATION TO MODEL 
PERIODICALLY-FOCUSED INTENSE BEAM 
PROPAGATION OVER LARGE DISTANCES 

In practical accelerator applications, if the spacing between quadrupole magnets 
corresponds (for example) to S = 2m, and the transverse nonlinear beam dynamics 
described by Eqs. (3)-(5) is to be followed in detail for 500 lattice periods, then 
the length of the transport system that is required is 1 km. The obvious question 
arises as to whether or not it is possible to model the nonlinear transverse beam 
dynamics described by Eqs. (3)-(5) in a compact laboratory configuration. The 
answer is yes, and the key is to recognize that the particle motion in the frame of 
the beam is nonrelativistic, and that the oscillatory quadrupole focusing terms in 
Eqs. (5) can be simulated in the laboratory frame by applying oscillatory voltages 
to cylindrical electrodes in a Paul trap configuration as illustrated in Fig. 1. 

To model an axially continuous charged particle beam (or a very long charge 
bunch), we consider a long nonneutral plasma column [Fig. 1(a)] with length 21 
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and characteristic radius rp < L, confined axially by applied dc voltages V = 
const, on end cylinders at z = ±L. The particles making up the (nonrelativistic) 
nonneutral plasma in Fig. 1(a) have charge q and mass m. With regard to transverse 
confinement of the particles in the x - y plane, there is no applied axial magnetic 
field (B0 = B0ez = 0). Rather, segmented cylindrical electrodes (at radius rw) have 
applied oscillatory voltages ±V0{t) over 90° segments with the polarity illustrated 
in Fig. 1(b). Here, the applied voltage V0(t) is oscillatory with 

V0(t + T) = Vo(t), 

L T dtV0(t) = 0 , (6) 

where T = const, is the period, and /0 = 1/T is the oscillation frequency. While 
different electrode shapes will result in an oscillatory quadrupole potential near 
the cylinder axis, the configuration shown in Fig. 1(b) is particularly simple and 
amenable to direct calculation. Neglecting end effects (d/dz = 0), and representing 
the applied electric field by Ea = -VL(f>a{x, y, t), where Vx • E, = 0 and V± x E, ~ 
0, it is readily shown that the solution to V\<j)a(x,y,t) = 0 that satisfies the 
appropriate boundary conditions at r = rw in Fig. 1(b) is given by 

, ,        .     4V0(t) ^ sin(l7r/2) (r\u m 

for 0 < r < rw and 0 < 9 < 2TC. Near the cylinder axis (r < rw), Eq. (7) readily 
gives to lowest order 

q<t>a(x, y, t) = -mKq(t)(x
2 - y2) , (8) 

where the oscillatory quadrupole focusing coefficient Kg(t) is defined by 

N(«) = ^. (») 

From Eqs. (6) and (9), note that Kq(t + T) = Kq(t) and J0
T dtKq(t) = 0. Moreover, 

Kq(t) has dimensions of (time)-2. Most importantly, from Eq. (7), the leading- 
order correction to Eq. (8) is of order (l/3)(r/rw)4. Therefore, for example, if the 
characteristic radial dimension rp of the plasma column in Fig. 1 satisfies rp/rw ~ 
0.1, then the corrections to the simple quadrupole potential in Eq. (7) are smaller 
than one part in 104 over the transverse region occupied by the plasma particles. 
That is, for sufficiently small rp/rw, Eq. (8) is a highly accurate representation of 
the applied quadrupole focusing potential </>a(x,y,t). Additional segmentation of 
the electrodes could in principle be used to cancel the residual octopole potential. 

We now construct the Hamiltonian for the transverse particle motion, neglect- 
ing axial variations (d/dz = 0).   Denoting the (dimensional) transverse particle 
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velocities by x = dx/dt and y = dy/dt, and the self-field electrostatic potential due 
to the plasma space charge by 4>s(x,y,t), it readily follows that the (dimensional) 
Hamiltonian Hji(x,y,x,y,t) describing the transverse particle motion is given by 

HL(x,y,x,ij,t) = -m(x2 + y2) + -m,Kq(t){x2 - y2) + q<f>s(x,y,t) , (10) 

where use has been made of Eq. (8). The striking feature of the transverse Hamil- 
tonian in Eq. (10) is that it is identical in functional form to the transverse Hamil- 
tonian defined in Eq. (5) provided we make the replacements 

t -> s , 

(i,y)->(i',y') , 

—</>3{x,y,t)^n/>(x,y,s), (11) 

«,(0[Eq. (9)] -+ «,(5)[Eq. (2)] , 

1 

m 
HL{x,y,x,y,t) -> H±(x,y,x',y',s) 

in Eq. (10). Therefore, the collective processes and nonlinear transverse dynamics 
described by Eq. (10) and the configuration in Fig. 1 are fully equivalent to the 
collective processes and nonlinear transverse dynamics described by Eq. (5) for 
an intense nonneutral beam propagating through a periodic focusing quadrupole 
magnetic field, provided we make the replacements in Eq. (11). For example, intense 
beam propagation through 500 quadrupole magnet lattice periods S is equivalent to 
studying the transverse dynamics of the compact nonneutral plasma configuration 
in Fig. 1 (which is axially stationary in the laboratory frame) for 500 oscillation 
periods T of the voltage V0{t). 

For completeness, consistent with Eq. (10) and Fig. 1, we summarize here the 
nonlinear Vlasov-Poisson equations describing the self-consistent evolution of the 
distribution function /(.x, y, x, y, t) and self-field electrostatic potential <f>s{x, y, t) in 
the transverse phase space (x, y, x, y). Of course, the characteristics of the nonlinear 
Vlasov equation correspond to the single-particle orbit equations calculated from 
Eq. (10), with dxjdt = m^dHJdkj. and d±±/dt = -m~1dH±/dx±. It readily 
follows that the nonlinear Vlasov-Poisson equations for f(x, y, x, y, t) and <f>s(x, y, t) 
consistent with the Hamiltonian in Eq. (10) can be expressed as 

it+ilx+4y- (*•<*>*+ ir**) Ix - {-«Mv+ily*) 1} A = °' 
(12) 

and 
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Z = -L z = o Z = +L 

FIGURE 1(a). Axial confinement of a long (L > rp) noneutral plasma column 
is provided by applied dc voltages V = const, on end cylinders at z = ±L. 

+ v0(t) "V     +Vo(0 

-v0(t) 

FIGURE 1(b). Transverse confinement of the noneutral plasma column is 
provided by cylindrical electrodes at r = rw with applied oscillatory voltages 
±V0(t) over 90° segments with V0(t + T) = V0{t) and JQ

T ^V0(i) = 0. 
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(I^^)^-4**/^' (13) 

where n(x,y,t) — f dxdyf is the particle number density. As expected, the collec- 
tive processes and transverse plasma dynamics described by the nonlinear Vlasov- 
Poisson equations (12) and (13) for the nonneutral plasma configuration in Fig. 1 
are identical to those described by Eqs. (3) and (4) for an intense beam propagat- 
ing through a periodic focusing quadrupole magnetic field, provided we make the 
replacements in Eq. (11). 

Typical oscillatory waveforms for the quadrupole focusing coefficient Kq(t) = 
(8q/nm)V0(t) defined in Eq. (9) are illustrated in Fig. 2. Here, Fig. 2(a) corresponds 
to a periodic step-function lattice with maximum amplitude kq and filling factor 
n, and Fig. 2(b) corresponds to a sinusoidal waveform with Kq(t) — kqs'm(2nt/T), 
where kq — const, and T = 1/fo is the oscillation period. 

The oscillatory applied potential, (m/2)Kq(t)(x
2 — y2), in Eq. (10) [or, equiva- 

lently, {\/2)nq{s){x2—y2) in Eq. (5)] typically results in a nonneutral plasma column 
(or intense charged particle beam) that has a pulsating elliptical cross-section [23] 
with characteristic transverse dimensions a(t) and b(t) in the x — y plane (see also 
Ref. 32). In this regard, it is convenient to denote the on-axis (r = 0) plasma den- 
sity by h and the corresponding plasma frequency by CJV = (4Trhq2/m)1^2. From 
Eq. (10), we further denote the characteristic (angular) oscillation frequency ujq 

for the transverse motion of a single particle in the (maximum) focusing field by 
£jq = \kq\ll2 = |8c?Vo/7rmr^|1/'2, where Vo = |Vo(^)Uai is the maximum applied 
voltage. Transverse confinement [23] of the nonneutral plasma by the field requires 
<JJp/y/2 < u>q. On the other hand, validity of the Hamiltonian averaging technique 
[23] summarized in Ref. 32 requires that the oscillation frequency f0 of the applied 
voltage V0(l) be sufficiently large and that the maximum voltage V0 be sufficiently 
small that Cjq < 2irf0. Combining these inequalities gives 

—=wp < w, < 2TT/0 , (14) 

or equivalently, 

1      (4nhq2\1/2       1 

V227T  V ml 2ir 

8qV0 

1/2 

< /o • (15) 

The inequalities in Eq. (15) assure robust transverse confinement of the plasma 
particles by the oscillating voltage V0(t) in Fig. 1. Equation (15) applies to either 
a single-species pure ion plasma or to a pure electron plasma. For a nonneutral 
electron plasma (q = —e and m = me), which is relatively simple to create and 
confine in a practical sense [26,27], Eq. (15) becomes 

6.35 x lO3^)1/2 < 1.07 x 107^— < /o , (16) 
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FIGURE 2. Illustrative oscillatory wave forms for the quadrupole focusing 
coefficient Kq(t) = (Sq/irm)Vo(t) corresponding to (a) the sinusoidal waveform 
Kg(t) = Kg s'm(2irt/T), where kq = const., and (b) a periodic step-function 
waveform with maximum amplitude Kq and filling factor rj. 
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where h, VQ, rw, and /o are expressed in units of cm~3, volts, cm, and s"1, re- 
spectively. As illustrative design parameters for a pure electron plasma, we take 
Vo = 100V and rw = 10cm. Equation (16) then gives the requirements /o = 10.7 
MHz and n < 2.8 x 106cm-3, which are both tractable requirements from a practi- 
cal standpoint [26,27]. For a pure ion plasma, the requirements on the oscillation 
frequency /o are less stringent. For example, for protons (m = mp, q — +e, and 
m^jra-p = 1/1836), assuming V0 = 100V and rw = 10cm, Eq. (14) gives f0 — 254 
kHz and n < 2.8 x 106cm~3. 

IV    CONCLUSIONS 

In summary, in this paper we presented in Sec. II a brief description of the non- 
linear Vlasov-Maxwell equations describing the collective processes and nonlinear 
transverse dynamics of a thin (rj <C S), intense charged particle beam propagating 
through a periodic focusing quadrupole magnetic field with axial periodicity length 
S — const. In Sec. Ill, a compact Paul trap configuration was described, which 
fully simulates the equivalent collective processes and nonlinear transverse beam 
dynamics in a periodic focusing transport system. This configuration (Fig. 1) of- 
fers the possibility of simulating intense beam propagation over large distances in 
a compact configuration which is stationary in the laboratory frame. 
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Field II — Hamiltonian Averaging 
Techniques in the Smooth-Focusing 

Approximation 
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Princeton University, Princeton, New Jersey 08543 

Abstract. This paper considers a compact Paul trap configuration to model the trans- 
verse nonlinear dynamics of an intense charged particle beam propagating through a 
periodic focusing quadrupole magnetic field in the collisionless regime. A long non- 
neutral plasma column (L 3> rp) is confined axially by applied dc voltages V = const. 
on end cylinders at z = ±L, and transverse confinement of the particles in the 
x — y plane is provided by segmented cylindrical electrodes (at radius rw) with ap- 
plied oscillatory voltages ±Vo(i) over 90° segments. Here, Vo{t + T) = Vb(t), where 
T = const, is the oscillation period. Neglecting axial variations (d/dz = 0), the 
Hamiltonian describing the transverse motion (assumed nonrelativistic) of a par- 
ticle with charge q and mass rn near the cylinder axis (rp   <g   rw) is given  by 
H±(x,y,x,y,t) = (m/2)(x2 -\-yi) + (m/2)Kq(t)(x

2 -y2) + q<j>s{x,y,t), where <p,(x,y,t) 
is the self-field electrostatic potential, and nq(t) = %qVa[t)/irmr^ is the (oscillatory) 
quadrupole focusing coefficient due to the applied field. Using a third-order Hamil- 
tonian averaging technique [R. C. Davidson, H. Qin, and P. J. Channell, Physical 
Review Special Topics on Accelerators and Beams 2, 074401 (1999)], a canonical 
transformation is employed that utilizes an expanded generating function that trans- 
forms away the rapidly oscillating terms in the Hamiltonian Hi_(x, y,x,y,t). Formally, 
c = \fcq\T2 / (2ir)2 < 1 is treated as a small dimensionless parameter, where kq is the 
characteristic (maximum) amplitude of the applied quadrupole field, and the canon- 
ical transformation is carried out correct to order c3.   This leads to a Hamiltonian, 

-H±(X,Y,X,Y,t) = (m/2)(X   +Y ) + {m/2)tf(X2 + Y2) + <j>s{X,Y,t), correct to 

order e3 in the 'slow' transformed variables (X, Y ,X ,Y). Here, the transverse focusing 
coefficient in the transformed variables satisfies ui — const., leading to enormous sim- 

plification in the analysis of the nonlinear Vlasov-Poisson equations for F(X ,Y, X, Y, t) 
and (j>s(X,Y,t). 
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I    INTRODUCTION AND THEORETICAL MODEL 

As discussed in a previous paper [1], a compact Paul trap can be employed to 
model the transverse nonlinear dynamics of an intense charged particle beam prop- 
agating through a periodic focusing quadrupole magnetic field in the collisionless 
regime. The basic configuration is illustrated in Fig. 1 of Ref. [1], where a long 
nonneutral plasma column (L ^> rp), consisting of a single charge species with 
charge q and mass m, is confined axially by applied dc voltages V = const, on end 
cylinders at z — ±L. Transverse confinement of the particles in the x — y plane is 
provided by segmented cylindrical electrodes (at radius rw) with applied oscillatory 
voltages ±Vo(t) over 90° segments as shown in Fig. 1. Here, V0(t + T) = Vo(t) and 
Jo dtVo(t) — 0, where T = const, is the oscillation period and /o = 1/T is the 
frequency. Near the axis of the cylinder (rp -C rw) the applied focusing potential 
(j>ap(x,y,t) can be approximated by [1] 

q<f>ap(x,y,t) = -mKq(t)(x
2 - y2) , 

rmrr^ 

over the radial extent of the plasma column. Here, the oscillatory quadruple fo- 
cusing coefficient Kq(t + T) = ng(t) has dimensions of (time)- . We denote trans- 
verse particle velocities by x = dx/dt and y = dy/dt. Neglecting axial variations 
(d/dz = 0), the nonrelativistic Hamiltonian Hj_(x,y,x,y,t) describing the trans- 
verse particle motion in Fig. 1 is given by 

H±(x,y,x,y,t) = -m(x2 + y2) + -mKq(t){x2 - y2) + q4>s(x,y,t) , (2) 

where c/>s(x,y,t) is the self-field electrostatic potential due to the space-charge of 
the nonneutral plasma column. 

The transverse equations of motion determined from Eq. (2) are the characteris- 
tics of the corresponding nonlinear Vlasov equation [2] for the distribution function 
/(x, y, x, y, t) in the transverse laboratory-frame phase space (x, y, x, y). Therefore, 
consistent with Eq. (2), the nonlinear Vlasov-Poisson equations for f(x,y,x,y,t) 
and (j)s(x,y,t) are given by [1] 

m+Xd~x+ydy- {^t)x + m^'j di ' {-^t)y + rn^'j d~y\ f = ° ' 
(3) 

( d2       d2\ f 
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where n(x,y,t) = f dxdyf is the particle number density. 
The nonlinear Vlasov-Poisson equations (3) and (4) are rich in physics content 

and provide a complete nonlinear description of the transverse dynamics and col- 
lective processes for the nonneutral plasma configuration illustrated in Fig. 1 of 
Ref. [1]. However, detailed calculations of equilibrium and stability behavior based 
on Eqs. (3) and (4) are generally complex because the quadrupole focusing co- 
efficient Kg(t) is both time-dependent and oscillatory. Therefore, in the present 
paper we employ a canonical transformation [3] that utilizes an expanded gener- 
ating function [4,5] to transform away the rapidly oscillating quadrupole terms in 
the laboratory-frame Hamiltonian H±(x,y,x,y,t) defined in Eq. (2). This leads to 

the transformed Hamiltonian H±(X, Y,X, Y,t) defined in Eq. (11) in the 'slow' 

transformed variables (X,Y,X,Y). The striking feature of Eq. (11) is that the 
transverse focusing coefficient satisfies il>2 — Kfq = const, (independent of 2), and 

the transverse focusing is isotropic in the X — Y plane. As a consequence, the corre- 

sponding nonlinear Vlasov-Poisson equations for F(X,Y,X, Y, i) and <j>s(X,Y,t) 
are much more amenable to direct calculation than Eqs. (3) and (4). 

The organization of this paper is the following. First, the canonical transforma- 

tion to the 'slow' transformed variable (X,Y,X,Y) is summarized in Sec. II. In 
Sec. Ill, several properties of the nonlinear Vlasov-Poisson equations in the trans- 
formed variables are discussed, and the back-transformation to laboratory-frame 
variables (x,y,x, y) is employed to determine plasma properties such as the (oscil- 
latory) density profile n(x,y,t). 

II    CANONICAL TRANSFORMATION TO SLOW 
VARIABLES 

As noted in Sec. I, detailed calculations of equilibrium and stability behavior 
based on Eqs. (3) and (4) are generally complex because the quadrupole focusing 
coefficient Kq(t) is both time-dependent and oscillatory, with /0 dtKq(t) = 0. In 
a recent analysis, however, we have developed a canonical transformation [3] that 
utilizes an expanded generating function [4,5] to transform away the rapidly oscil- 
lating terms in Eq. (2). The present analysis introduces the dimensionless small 
parameter e defined by 

.-'^<l, (5) 
(2TT 

where |K9| is the characteristic maximum amplitude of the quadrupole focusing 
coefficient. The single-particle Hamiltonian for transverse particle motion defined 
in Eq. (2) is formally expressed as 

H±{x,y,x,y,t) -m(x2 + y2) + -niKq(t)(x
2 - y2) + q<j>s(x,y,t) (6) 
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where the small parameter t is proportional to the strength of the focusing field. 
We employ a near-identity canonical transformation [3] from laboratory-frame vari- 
ables (x, y, x, y) to 'slow' variables (X, Y, X, Y) that is generated by the generating 
function 

oo 

S(x,y,X, Y,t) = xX + yY+Y, *nSn(x,y,X, Y,t) . (7) 

Consequently, the transformed Hamiltonian Hi_(X, Y, X, Y, t) in the new variables 
is given by 

00 B ■    ■ 
H± = Y,£nKn = HL + -^S(x,y,X,Y,t), (8) 

n=l 

and the corresponding coordinate transformation is given by 

ßQ °°        3 .    . 
* = -^ = * + £ tn^Sn(x,y,X, Y,t) , 

dX ~L    dX 

/5<?      •      °°      8 ■   ■ 
x = 7- = X + Y,tn

irSn(x,y,X,Y,t). (9) 
dx ^    dx 

The equations for Y and y are similar in form, provided we make the replacements 
(X,i) -j. (Y,y) and (x,X) -+ (y, Y) in Eq. (9). 

We choose, order by order, the generating function Sn in such a way that Hn 

is independent of the fast time scale associated with the oscillations in nq(t). The 
coordinate transformation is then determined iteratively when Sn is known. We 
introduce the definitions 

aq(t) = f dtKq{t) ,   ß,(t) = f dt[aq(t) - (a,)] , 
Jo Jo 

(...) = I jTT <&(...),   Sq(t) = a2
q(t)-2Kq(t)ßt(t), 

= KSq = (5q) - (a9)
2 = I j* dt[al(t) - (aq)

2} , (10) *? 

where nq(t + T) = Kq(t) is assumed to have zero average with /0 dtKq(t) = 0, and 
odd half-period symmetry with Kq(t - T/2) = -Kq[—(t - T/2)]. Paralleling the 
detailed analysis presented in Ref. 3, we obtain the transformed Hamiltonian in 
the slow variables correct to order e3. This gives 

Ux(X,Y,X,Y,t) = ^m(x\Y) + ^mwq
l(X2+Y2) + qMX,Y,t),      (11) 
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where we have set e = 1. Here, w2 = Kfq = const, is the constant focusing coefficient 
defined in Eq. (10), and we have introduced the (canonical) fiber transformation 
to shifted velocity coordinates defined by 

X = X ,   X = X- (aq)X , 

Y = Y,   Y = Y + (aq)Y. (12) 

In addition, correct to order e3, we calculate the coordinate transformation, x = 
X + txx + c2x2 + e3x3, x = X + eij + £2i2 + c3x3, etc. Setting e = 1, this gives 

x(X, Y, X, Y, t) = [l- ßq{t)]X + 2 (jf <W)) X , 

x{X, Y, X, Y, t) = [l + ßq(t)]X + { - MO ~ (a,)] 

x[l+ß,(t)]-(£dt[5q(t)-(6t)] 

y(x, y,x, Y,t) = [i + 0,(<)]y - 2 QT <*<&(<)) y , 

2/(X,y,i-,y,i) = [1 -ßq{t)]Y + l[aq(t) - (a,)] 

x [1-&(*)]- (£<&&(')-<*,)]) }v- 

[dtßS)} 

X 

and 

öy 
x'-Y^A^ux,?^ 

oX        dY    m 
(14) 

where aq(t), ßq(t), and <S„(t) are defined in Eq. (10). In addition, aq(t) and (aq) 
are of order e; /3,(f) is of order e2; and (aq)ßq{t), aq(t)ßq{t), (/„'*#,(*)), and 
(/o dt[Sq(t) — {5q}]) are of order c3. The inverse coordinate transformation [3] can be 

readily obtained correct to order e3 by solving Eqs. (13) and (14) for (X,Y,X,Y) 
in terms of (a;, y, x, y). 

The major simplification associated with transforming to the 'slow' variables 
(X,Y,X,Y) is immediately evident from Eq. (11). In particular, the focusing 
coefficient C?q   = njq occurring in Eq. (11) is both constant (independent of t) 
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and Isotropie in the transverse X — Y plane. This should be contrasted with the 
expression for the laboratory-frame Hamiltonian Hj_(x, y, x\ y', t) defined in Eq. (2), 
where the focusing coefficient KQ(t) is a rapidly oscillating function of t. Making use 
of Eq. (11), the nonlinear Vlasov-Poisson equations for the distribution function 

F(X,Y, X, Y, t) and self-field potential (t>s{X, Y,t) in the transformed variables are 
given by 

dt        dX        dY     \ "        mdX^JQx     V ™dY   ) dY) 
(15) 

dX 
)2        d2 \ r   ~   ~ 
^- + -^- )(f>s = -47TO / dXdYF , 
X2     dY2) J 

(16) 

where n(X,Y,t) = / dXdYF is the particle density in the transformed variables. 

Ill    PLASMA PROPERTIES IN THE TRANSFORMED 
VARIABLES AND BACK-TRANSFORMATION TO 

THE LABORATORY FRAME 

The enormously simple form of Eqs. (15) and (16) in the transformed variables, 
relative to Eqs. (3) and (4) in laboratory-frame variables, permits the detailed cal- 
culation of a wide range of equilibrium and stability properties that would otherwise 
be elusive. We briefly summarize here a few of these properties, and the reader is 
referred elsewhere [3,6] for a more complete discussion. 

(a) Defining X = RcosQ and Y = fisinö, Eqs. (15) and (16) support a broad 
class of axisymmetric equilibrium solutions (d/dQ = 0 = d/dt) of the form 

F°(X,Y,X,Y) = F°{n°x) , 

1        ;2       ;2 1 
%l =   m{x  +Y) + -mtfR2 + qcf>0

s(R) . (17) 

Here, R = (X2 + Y2)1!2 is the radial coordinate in the transformed variables, "H° 
is the single-particle Hamiltonian in the equilibrium field configuration, and the 
equilibrium space-charge potential <^>°(i?) is determined self-consistently from the 
(nonlinear) Poisson equation 

iÄÄÄ#(^ = -4^n°(£) = -47TS / dXdYF\Ul) . (18) 
RoR   oR J 
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(b) Examples of self-consistent Vlasov equilibria F°CH0
X) range from the thermal 

equilibrium [2,3,6-9] distribution F°{H°±) = ßexp(-M°JT), to the Kapchinskij- 
Vladimirskij distribution [3,6,10], to the so-called 'waterbag' distribution [3,6,11]. 
Denoting the on-axis equilibrium density by h = n°(R = 0), for the entire class 
of equilibrium distributions F°(H°L) the condition for transverse confinement [3] of 
the particles [n°(R —> oo) = 0] by the applied focusing field is given by 

„,      I.,      14nhq2 , „. 
< > -^ S 2-J- ■ <19) 

Equation (19) is simply a statement that applied focusing force must exceed the 
(defocusing) space-charge force in order for there to be transverse confinement of 
the particles. 

(c) Of course the nonlinear Vlasov-Poisson equations (15) and (16) possess global 
conservation constraints [2,12,13] corresponding to the conservation of particles, 
generalized entropy, and total energy. These constraints can be used to show that 
a sufficient condition for linear and nonlinear stability is given by [12,13] 

The stability theorem in Eq. (20) is a very powerful result, and is valid for arbi- 
trary space-charge intensity consistent with Eq. (19). Whenever the equilibrium 
distribution F°(%° ) is a monotonically decreasing function of energy %° , there is 
no free energy available [12,13] for perturbations to grow, and therefore the system 
is stable. 

(d) In general, once the distribution function F(X,Y,X,Y,t) in the slow vari- 
ables is calculated from the nonlinear Vlasov-Poisson equations (15) and (16), it is 
straightforward to determine the corresponding distribution function f(x,y,x,y,t) 
in the laboratory frame [3]. Specifically, we make use of f(x,y,x,y,t)dxdydxdy = 

F(X,Y,X,Y,i)dXdYdXdY and the fact that the Jacobian of the (canonical) 
transformation in Eqs. (13) and (14) is equal to unity correct to order e3. This 
gives 

f{x,y,x,y,t) = F \X(x,y,x,y,t),Y(x,y,x,y,t),X{x,y,x,y,t),Y{x,y,x,y,t),t\  , 

(21) 

where the inverse coordinate transformation X(x,y,x,y,t), X(x, y,x,y, t), ■ ■ •, can 

be easily obtained [3] correct to order e3 by solving Eqs. (13) and (14) for X, X,-- 
in terms of x,x, ■ ■ ■. 
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(e) Equation (21) can be used to calculate a wide variety of properties of the 
(oscillatory) solutions in the laboratory frame. For example, consider the class of 
equilibria F°(7i°±) in the transformed variables, which have circular cross-section 

and constant mean-square radius fl2
0 = (fi2)0 = N'1 f dXdYdXdYR2F°(Hli), 

where N = / dXdYdXdYF°(H°L) is the number of particles per unit axial length. 
In the laboratory frame, however, it can be shown from Eqs. (17) and (21) 
that the mean-square transverse dimensions of the plasma column, (x2)(t) — 
JV-1 f dxdydxdyx2f{x,y,x,y,t) and {y2){t) = N'1 f dxdydxdyy2f(x,y,x,y,t), are 
oscillatory with 

(x2)(t)=l-a2(t)=l-[l-ßq(t)}
2Rlo, 

{yi){t) = h2(t)^\ll + ßg(t)]
2Koi (22) 

correct to order e3. From Eq. (10) and Kq(t + T) = Kq(t), it follows that ßq(i + T) = 
ßq(t) oscillates with the same period T as the confining quadrupole field. Moreover, 
Eq. (22) gives 

'^ + Ä = i , (23) 
a\t)      b2(t) 

where a(t + T) = a(t) and b(t + T) = b(t). Therefore, for the entire class of 
equilibria F°(-H^_), the cross-section of the plasma column in the laboratory frame 
corresponds to a pulsating ellipse with period T. 

(f) Finally, for the entire class of equilibria F°(H°L) in the transformed variables, 
we denote the solution for the equilibrium density profile by n°(R/Rv0), where 
we have scaled the radial coordinate to the rms radius Rpo. Without presenting 
algebraic details, it can be shown [3] that the corresponding density profile n(x, y, t) 
in the laboratory frame is given by 

p2 
y2 

+  y 
a*(t)      b2{t) 

l/2\ 

(24) 

correct to order e3. That is, the contours of constant density in the laboratory 
frame are (pulsating) elliptical surfaces with x2/a2(t) + y2/b2(t) = const. From 
Eq. (22), note that R2

p0/a{t)b(t) = [1 - ß2^)}'1 ~ 1, because ßq(t) is of order e2. 

IV    CONCLUSIONS 

The canonical transformation and Hamiltonian averaging technique summarized 
in Sec. II represents a powerful formalism [3] for transforming the laboratory-frame 
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Hamiltonian H±(x,y,i,y,t) [Eq. (2)], with rapid oscillations in the quadrupole 

focusing coefficient Kq(t), to the Hamiltonian HL(X,Y,X, Y,t) [Eq. (11)] in the 

'slow' transformed variables (X, Y,X,Y). Because the focusing coefficient satisfies 
&>g = Kjq — const, in the transformed variables, and the transverse focusing force, 

-Kjq(Xex + Yey), is isotropic in the X — Y plane, the resulting nonlinear Vlasov- 

Poisson equations (15) and (16) for F(X,Y,X,Y,t) and <f>s(X,Y,t) are readily 
amenable to direct calculation (Sec. III). Time-dependent plasma properties in the 
laboratory frame, such as the particle density n(x,y,t), are also readily determined 
by employing the back-transformation to laboratory-frame variables (x,y,x,y). 
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Verification of Coulomb Order 
in a Storage Ring 

Rainer W. Hasse* 

GSI Darmstadt, D-64291 Darmstadt, Germany 

Abstract. We verify theoretically that the anomalous longitudinal temperature re- 
duction of strongly electron cooled heavy ions in the ESR at very low density is ex- 
plained by the fact that there is no intrabeam scattering and that the particles by their 
Coulomb repulsion cannot pass each other any more. At the achievable momentum 
spreads Coulomb order is reached at particle distances of the order of centimeters. 
It is also shown that under the given experimental conditions in the proton NAP-M 
experiment of 1980 intrabeam heating counteracts Coulomb order. 

In 1996, Steck et al. [1] reported on measurements with very low density and 
extremely electron cooled heavy ions in the Experimental Storage Ring (ESR) of 
GSI. By Schottky noise measurements they found a sharp drop of the longitudinal 
momentum spread 5p/p by an order of magnitude from 5 x 10~6 down to 5 x 10"7 

for particle numbers from 103 down to 3 in the ring of about 100 m circumference. 
Thus, arranged in linear chains the average distances between the ions would be 
between 10 cm and 33 m. Due to machine limitations 5p/p could not fall below 
this lower value. A typical example is shown in Fig. 1. 

if 

ft 5 

£ » 
ID"6 

10 

:IIIIH lira HUM  mm IIIJH 

.•* 
J>   " 

; i . 
■ 1 • " 
: s E 

: u92+: 
:• « ':. >** : 

1   ■!■■ 1 1 IHM nitiJ   min -IJUM 1 II IB 

number of stored ions 

FIGURE 1. Experimental momentum spread vs. number of stored ions in the ESR for electron 
cooled U92+ ions at 240 MeV/u (after ref. [1]) 
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The beam radius for the heavy beams could be determined to about 30 /xin 
and by emittance measurements, the transverse temperature was limited to about 
1.5 eV. This anomaly resembles a strong suppression of intrabeam scattering below 
a certain threshold. Since heating of the beam is caused by intrabeam scattering, 
also heating is strongly inhibited, thus reaching the very low öp/p « 5 x 1(T7. 

It has been speculated that the final beam structures might be the storage ring 
analogues of Coulomb crystals as they were calculated in ref. [2] and as they were 
found in ion traps [3]. Here we confirm with the methods applied in ref [4] that 
indeed the beams resemble strings with particles which move slowly in the beam 
direction but, however, cannot pass at each other any more. This type of order of 
a liquid caused by the nearest neighbours only we call Coulomb order in contrast 
to a Coulomb crystal which is generated by long range Coulomb interaction over 
many neighbours. 

In order to explain this effect we perform classical Monte-Carlo trajectory cal- 
culations of two charged particles heading at each other with constant focusing 
with the betatron frequency of the ESR and calculate the probability of these two 
particles being reflected at each other. It is sufficient to consider the interaction of 
two particles only since their mutual Coulomb repulsion acts only considerably at 
near distance of the order of tens of micrometers. To have a constant beam radius 
for all masses the experimental transverse temperature must obey the approximate 
relation Tlrans = 7.5 x A meV. This energy is distributed among the two transverse 
degrees of freedom according to a Boltzmann distribution in harmonic potentials 
with equal betatron frequencies wß = 2irQßc./L, where ßc is the beam velocity, 
Q=2.3 is the average tune, and L is the circumference of the ring. The longitudinal 
kinetic energy is obtained from M(cß öp/p)2/(8 In 2). where M is the mass, see 
ref. [1]. 
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FIGURE 2. Calculated reflection probabilities vs. distance between particles for given temper- 
atures 

In order to systematize the calculations, three dimensionless parameters are in- 
troduced: The relative transverse, 0trans and longitudinal, 0iong, kinetic energies 
measured in units of the mutual Coulomb energy of two particles at a distance d, 
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ec = q2ry/d, where q is the charge and 7 is the relativistic parameter. These rel- 
ative temperatures, thus, are the reciprocal gamma parameters in Wigner crystal 
theory; i.e. a one-component plasma is in the gaseous state for T <C 1, in the liquid 
state for 1 < T < 100, and in the crystalline state for T > 170. Note, however, 
that here T does not play a decisive role since distances involved are much larger 
than the Wigner-Seitz radius. Furthermore, the linear string density A = a-ws/d is 

the axial number of particles within a Wigner-Seitz radius ows = (392/2Mwgj . 
Note that at zero temperature A = 0.709 is the limiting value for a Coulomb string 
turning into a zigzag and A « 4 would give a helix with a string at the center [2]. 

For typical experimental values of the kinetic energies a result is shown in Fig. 2. 
Within a factor of two in the distance, e.g. from 10 cm to 20 cm, the reflection 
probability rises sharply from 10% to 90%. On the other hand, Fig. 3 shows a 
contour plot of the reflection probability for fixed distance. Similarly, for given 
distance the reflection probability varies very slowly with 0trans, i-e. it goes from 
10% to 90% about within a factor 100 in 0trans, but more rapidly, with a factor of 5 
only, in Oiong- As a rule of the thumb 6i0ng6tYanS stays constant for given distance 
and fixed reflection probability. In the analysis of the experiments, hence, the 
results are little sensitive to the assumed transverse temperature of 7.5 x A meV. 
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FIGURE 3. Contour plot of the calculated reflection probabilities vs. relative transverse and 
longitudinal temperature at fixed density A = 0.00015 

With the help of these tools the ESR experiments were analysed with the results 
shown in Fig. 4. In most cases the calculated reflection probability rises sharply 
in the vicinity of the last upper (open) data point thus indicating that for larger 
particle distances the ions cannot pass each other any more. In the last frame the 
reflection probability is also calculated for the first ultracold data point (left line). 
This is shifted to smaller distances by almost two orders of magnitude. It indicates 
that here the ions move so slowly in the beam direction that reflection would happen 
even for much smaller interparticle distances which, however, cannot be reached 
experimentally. However, this distance is still two orders of magnitude larger than 
the Wigner-Seitz radius (the typical Coulomb crystal string distance) which means 
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that, real Coulomb crystals instead of Coulomb order only cannot be produced in the 
ESR with the present electron cooling methods. The same argumentation applies 
to the two lines in the nickel frame where even multiple points were measured 
for the same distance. An exception from this systematic^ is the case of argon 
which suggests that the last upper data point should be somewhat smaller than 
5p/p = 4 x 10~6. In the titanium data there is no drop in the momentum spread. 
The point used for evaluation evidently belongs already to the ultracold branch 
which can also be seen from the low longitudinal temperature of table I. 
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FIGURE 4. Experimental momentum spreads (points, left scale) and calculated reflection prob- 

abilities (lines, right scale) vs. distance for the various ESR experiments [1]. The reflection 

probabilities are calculated at the last upper or first lower (open) data point. 

A summary of the data and of the results is shown in table I. The linear density A 
is about 5000 times smaller than the critical string density which shows again that 
the order reached is far from the one of Coulomb crystals. The average transverse 
rms displacement in the last column was calculated with [4] prms = di/4A30trans/3. 
As assumed, it settles around 30 /im for all elements as noted by the authors of 
ref. [1].   In the next to the last column is shown the ratio of collisional time to 
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transverse period of a particle, rcoii/rtrans = \/Ttrans/7iong x d/prms. As a result, 
thousands of betatron oscillations are performed during one binary collision, thus 
indicating that intrabeam scattering is negligible. 

TABLE I. Experimental data, momentum spread Sp/p, distance d, Wigner-Seitz radius aws, 
linear density X, longitudinal and transverse temperatures Tiong, Ttrans, reflection probability, rms 
radius pims , and ratio of collision time to transverse period. The italicized lines are predictions. 

Ion E Sp/p d aws A Jlong 
[meV] 

-L trails r.p. Arms Troll 

[MeV/u] [10-] [cm] [urn] [meV] [%] [/im] Ttrans 

ESR 12C(i+ 240 2 0.17 7.7 0.0046 1.5 90 68 30 450 
ESR 20Ne10+ 240 2 0.25 9.1 0.0036 0.40 2000 80 30 700 
ESR 40Ar18+ 360 4 4 8.9 0.00020 19 300 b 21 8500 

ESR 48TJ22+ 240 2.5 0. 11.5 0.0026 9 370 100 30 950 
ESR 58N;28+ 205 4 8 13.6 0.00016 26 440 24 33 1300 
ESR scKr36+ 240 4 6 13.3 0.00022 39 640 25 30 8000 
ESR 132Xe54+ 240 6 10 15.0 0.00015 120 1000 10 30 10000 
ESR 107Au79+ 360 6 2 14.0 0.00070 290 1500 82 21 2200 
ESR 238JJ92+ 360 5 10 14.6 0.00015 240 1800 99 21 13000 
ESR 65 1 0.2 9.1 0.0045 0.01 7.5 50 70 1000 
SIS 86jfr3G+ 11.4 15 0.5-10 50 0.004-0.01 40 90-200 50 60-90 100-4000 

NAP-M P 65 1 2/zm 8.0 4.2 0.01 25 — 150 0.6 

The two italicized lines are predictions for a proton experiment in the ESR stor- 
age ring with the energy of the NAP-M experiment [5] and for a future krypton 
experiment in the synchroton SIS at GSI at injection energy with the recently 
installed electron cooler, respectively. The proton prediction is very close to the 
existing carbon data. On the other hand, due to the stronger focusing forces in the 
SIS (the horizontal and vertical tunes are 4.3 and 3.3), respectively) the threshold 
of 50% reflection will be shifted to larger linear densities closer to the critical string 
density i.e. to smaller interparticle distances. Coulomb order can be reached with 
even larger momentum spreads of the order of 1CT5. Here the calculation of the 
reflection probability was carried out with anisotropic focusing, however with little 
change in the results as compared to isotropic focusing. 

Finally we analyse the cooling experiment with protons in the then existing 
Novosibirsk NAP-M storage ring [5] which burned down afterwards. Here the 
authors suggested long ago that order has been reached. Their argumentation 
was based on the fact that if the proton current fell below 10 /xA the noise power 
dropped to unmeasurable levels and thereafter stayed constant. With the given 
data of circumference 47.25 m, average tune 1.29, energy 65 MeV, the number 
of particles in the ring for 10 pA current was N = 2.5 x 107 from the relation 
7p = eN/rev, where /rev is the revolution frequency. An average transverse kinetic 
energy of 25 meV was derived from the measured beam radius of 100 /im and an 
average longitudinal kinetic energy of 10~4 eV was obtained from Schottky noise 
measurements. From this one gets the momentum spread of Fig. 5 with a critical 
Sp/p = 10~6. 

According to the last row of table I the linear density is A « 4 indicating that 
the system is no longer in the linear regime and the average axiai distance is 2 /im, 
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FIGURE 5. Momentum spread vs. longitudinal distance between protons of the NAP-M ex- 
periment (after ref. [5]) 

much smaller than the Wigner-Seitz radius of 8 ^m. The average spacial particle 
distance is about 40 /xm. According to table I, collision time and transverse period 
are about the same. Two particle calculations without taking into account other 
neighbours, hence, do not suffice to simulate this system. Therefore we performed 
full molecular dynamics calculations with periodic boundary conditions as in ref. [4] 
with 1000 particles under constant focusing and computed the Coulomb interaction 
with Ewald summation [2]. 

160       240       320       400 

time [fisec] 

FIGURE 6. Half transverse (upper curve) and increase of longitudinal kinetic energy (lower 
curves) due to intrabeam scattering up to thermal equilibrium (Tiong = ^Ttrans) with the input 
data of the NAP-M experiment. Shown is the average over 20 Monte-Carlo simulations. The long 
lower line is without cooling and the short one with cooling with e-folding time 400/iscc. 

Fig. 6 shows the average over 20 simulations with random initial coordinates 
of the particles. With (short lower line) or without (long lower line) cooling, by 
intrabeam scattering after 200 betatron oscillations the longitudinalal kinetic en- 
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ergy already reaches one third of the value of the transverse kinetic energy. This 
yields an initial longitudinal heating rate of more than 50 eV/sec and after about 
1000 betatron oscillations, i.e. about 400 /isec, without cooling thermal equilibrium 
(©long = 2©tra,ns) has been reached. Cooling with an e-folding time of 400^sec just 
has the effect that the longitudinal temperature reaches only half of the value of 
thermal equilibrium. This has to be compared with typical electron cooling times 
of a few milliseconds [6]. The authors' theory of collective interaction of the protons 
together with beam magnetization [7] may explain a possible suppression of intra- 
beam scattering in this case. Our predictions, on the other hand, cf. table I, would 
yield Coulomb order for an interparticle distance of 0.2 cm, i.e. proton currents 
below 10 pA. 

In summary, our calculations of the reflection probabilities have shown that with 
the ESR experiments for the first time Coulomb order has been established in a 
heavy ion storage ring. This order is of liquid type where the particles still move 
slowly against each other but cannot pass any more. 

The author likes to thank M. Steck for valuable discussions. 
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Proton Beam-Electron Plasma Interactions 

R. E. Pollock, Jennifer Ellsworth, M. W. Muterspaugh, D. S. Todd 

Indiana University Department of Physics and Cyclotron Facility (1UCF) 

Milo B. Sampson Lane, Bloomington IN 47408-1398 

Stored, cooled proton beams of 200 MeV with intensities up to 3 mA pass along the axis of a 

Penning-Malmbcrg trap containing a nonneutral plasma of 1010 electrons. The plasma is 

maintained in a warmed steady state by injecting energy and angular momentum; the elevated 

temperature giving weak ionization to replenish lost electrons. Comparing charge density 

wave velocity with diocotron mode frequency gives continual non-destructive monitoring of 

plasma radius and density. The beam is observed to cause an increase in plasma radius 

indicating a torquing mechanism not yet understood. The effect is weakly sensitive to shifts 

in beam position or angle. Monitoring power input shows either "cooling" (increased electron 

loss rate) or heating depending on regulation method. Extension of these studies to higher 

containment fields will be described. 

INTRODUCTION 

Study of properties of long-lived nonneutral plasmas began at Indiana University 
five years ago. A warm electron plasma can be stabilized by controlled power input, 
permitting quite detailed examination of near-equilibrium properties. A full description 
of techniques developed for creating, controlling and monitoring this plasma target is 
beyond the scope of this brief paper, and will be published elsewhere (1). The next 
section provides an abbreviated summary of relevant system properties. 

For the past three years, experimental study of the effect of particle beams of high 
velocity on a trapped electron plasma has been carried out by placing the plasma in the 
path of a stored proton beam in the IUCF Cooler. Initial observations were limited to 
energy transfer from beam to plasma at beam intesities below 0.2 mA, and showed 
evidence for two mechanisms: one present with coasting beam (no time structure); and 
the second with bunched beam (multiple harmonics of the 2 MHz orbit frequency). The 
magnitude of the heating by coasting beam was in excess of estimates based on single 
particle scattering by two or three orders of magnitude. Bunching the beam increased 
the heating with a term quadratic in beam current, apparently a collective mechanism 

CP498, Non-Neutral Plasma Physics HI, edited by John J. Bollingcr, et al. 
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involving charge density wave excitation. By overlapping a beam orbit harmonic with a 
plasma standing charge density wave resonance (Gould-Trivelpiece mode (2)), the 
bunched heating could be enhanced more than one-hundred-fold. The bunched beam 
heating was strong enough off-resonance to limit beam currents to below 0.5 mA. 

In the past few months, a new capability of non-destructive plasma radius 
monitoring with beam present, has shown that angular momentum transfer from beam to 
plasma is significant. In the same interval, a new injector for the storage ring has made 
intensities up to 2 -3 mA available. A sampling of observations of beam-induced plasma 
expansion, and the revisions to our understanding of the power transfer comprise the 
two beam interaction sections below. 

This data must be understood as an interim report on work in progress. Some 
variability among beam exposures indicates the presence of uncontrolled parameters in 
the interaction process. At higher beam currents, the plasma appears sensitive to beam 
properties which are not visible to the present storage ring diagnostics. Further 
investigation may reveal ways to use the plasma response as an aid to optimization of 
storage ring behavior. 

SYSTEM PROPERTIES 

The electron plasma is contained by a modified form of Malmberg-Penning trap 
with B < 0.23 T, length 0.37 < L < 0.52 m, wall radius Rw = 0.051 m, and a vacuum 
in the range 0.3 < p < 2 nTorr. The plasma is formed at low density by off-axis 
injection from a tungsten filament, then heated by a broadband noise signal applied to a 
ring electrode so ionization of residual gas can be used to raise the density to any desired 
value below the confinement potential limit of 200 eV. The input power is then reduced 
to sub-nanoWatt level to allow the plasma temperature to fall to about 4 eV where a 
weak, continuing ionization can balance slow loss of particles to maintain a constant 
particle number. The containment lifetime for a plasma electron lies in the range from 1 
to 10 minutes, improving with increasing magnetic field or with the application of an 
(uncalibrated) torque by means of the "motor", a rotating dipole or quadrupole electric 
field applied to eight sector electrodes near one end of the trap. The plasma itself can be 
maintained in the time-independent near-equilibrium state for days or weeks, allowing 
quite detailed examination of its properties. 

Non-destructive diagnostics include an N' = N/L monitoring process, in which a 
transverse kick is applied every 3 s to induce tranverse displacement for measurement of 
the (diocotron + magnetron) revolution frequency of the displaced plasma column about 
the trap symmetry axis. Negative feedback returns the plasma to the trap axis between 
measurements. The "kicked frequency" FFT peak is stable in the range 12 < fk < 60 
kHz at Bz = 0.144T, corresponding to 1 1010/m < N < 5 1010/m. 
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The plasma potential Vpi is measured by exciting one or more standing charge 
density wave resonances (axisymmetric Gould-Trivelpiece modes). To lowest 
approximation, the wave velocity vw is given simply by the plasma potential (vw/c)2 = 
qVpi/mc2. The calibration is verified by the destructive dump pulse technique (lowering 
potential of one endcap until loss of particles is seen). An effective length for the plasma 
is extracted which agrees with the electrostatic expectation to about 10%. The 
exponential leading edge of the dump pulse also gives a check on plasma temperature. 
However because the ionization rate is exponentially sensitive to temperature, the 
stabilized plasma is essentially a constant temperature system with kT about 4 eV. 

The ratio of Vpi to line charge density qN7(47te0) gives the logarithmic factor [1 + 
In (Rw/Rpi)2] from which the plasma radius Rpi is extracted. The absolute value of Rpi 
is subject to systematic uncertainties from end effects and other corrections which are 
believed to be established at about the 20% level. The relative precision is much better, 
so that small changes in radius are readily observed as system properties are varied. 

The G-T resonance gives a useful method for stabilizing the value of Vp|. An rf 
synthesizer supplies a sinusoidal signal to a ring electrode. The frequency is tuned just 
below the resonance peak. If the plasma density drifts downward, the peak overlaps the 
synthesizer signal more strongly and the resulting enhanced wave amplitude supplies 
power for ionization to restore the equilibrium. By measuring the transmitted wave 
amplitude excited by the line source, and the damping width of the resonance signal 
(weakly excited by a swept source or the broadband noise source), the absolute power 
input can be determined. 

An independent check of the power input calibration is obtained by using 
additional power to slowly raise the number of electrons at a measurable rate and making 
use of the 20 eV chemical potential ((ionization energy + 3/2 kT): creating a pair of 
electrons from one energetic tail electron in a collision with H2 residual gas; then adding 
thermal energy to the new one). The two methods are in reasonable agreement (3). 

In the absence of beam, as the particle number N is varied, power input required to 
maintain a plasma is found to increase nearly linearly with N2. This behavior is 
illustrated in Figure 1. To display the similarity of shape, the (+) vertical scale has been 
adjusted to obtain agreement at large density. One would expect terms linear in N', for 
example to maintain constant temperature in the presence of radiation cooling. This is a 
likely explanation for the curvature and offset at the lower left. It is tempting to ascribe 
the dominant (N')2 term to an electron loss mechanism of this form. However this is 
not consistent with loss rate observations when the heat source is removed. 

An example of the use of the non-destructive plasma radius determination in the 
absence of beam is shown in Figure 2, a comparison of the volume density in 
equilibrium with the density observed when heat is removed and the plasma allowed to 
"free fall". The density is somewhat higher at higher magnetic confinement fields. The 
freefall and equilibrium shapes are similar, but with lower density in freefall. 
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FIGURE 2. Plasma volume density n (electrons/m3) versus N/L (electrons/m). Three data sets show 

"heated" equilibrium, and "freefall" unheated decline, the latter at two field levels. The plasma radius 

adjusts itself as electrons are lost so the volume density falls about half as fast as N/L. While the freefall 

density is lower than the equilibrium density for the same B field, the similarity of shape suggests that 

the decline proceeds through a set of near-equilibrium states. 
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BEAM- PLASMA TORQUE 

Using the non-destructive plasma radius measurement scheme described in the 
preceding section allows radius changes to be monitored in the course of exposure to a 
fast proton beam. The quantity (Rp)/Rw)2 gives the fraction of the trap cross-sectional 
area occupied by plasma. Well below the Brillouin limit, this is proportional to the 

canonical angular momentum per particle. Observations indicate that the beam-plasma 
interaction involves a significant and unanticipated angular momentum transfer leading 
to radial growth of the plasma. 

As shown in Figure 3, the plasma area can be doubled with a beam current of 
about 0.3 mA, overwhelming the limited compression torque of a rotating electric dipole 
field "motor". The motor amplitude is adjusted for each beam current to supply half the 
power required to maintain plasma equilibrium. Note that at zero beam current, the 
motor torque is sufficient to raise or lower the plasma area by 30%. 

Arguing from angular momentum conservation, one would expect no torque in a 
system with axial symmetry. However attempts to reduce the observed radial expansion 
by changes in beam position and angle have been largely unsuccessful. Using storage 
ring localized parameter combinations, it is possible to carry out the four-dimensional 
search over a restricted range of beam offsets.  Results in the horizontal plane are 
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FIGURE 3. Comparison of beam torque with rotating field torque over a range of beam currents. 

The motor's dipole field rotates at + 1.8 MHz or -1.8 MHz in the laboratory frame, giving compression 

for the former. A beam of 0.1 mA causes a change in equilibrium radius comparable to that produced by 

turning off the rotating field. Note reduced slope and reduced reproducibility at currents above 0.3 mA. 
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shown in Figure 4. Plasma expansion increases only slightly for large transverse beam 
displacements. The dependence on beam angle is stronger, but the scan could not be 
extended further to show either a decrease on the right side (if optimal alignment gives 
maximum torque) or a rise on the left (if optimal alignment gives minimum torque). To 
resolve this issue, stronger steering magnets sets could be added to the storage ring to 
span a wider range of beam angles. 
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FIGURE 4. Sensitivity of beam-caused expansion to misalignment of beam relative to plasma. Plot 

bottom represents plasma in equilibrium with no beam. Beam position scan, spanning 16 mm at beam 

currents of 0.27(4) and 0.58 mA (•), shows a weak enhancement for large displacements. The angle 

scan, covering 3 mrad at 0.27 mA (+). appears to show that expansion is reduced when misaligned, but 

if so, the inferred reduction on the right side was inaccessible. 

Tests for sensitivity of the beam-caused expansion to other parameters show that 
beam bunching, changes in vacuum by turning off or firing pumps, operating with 
different motor settings, while causing changes in the equilibrium plasma area in the 
absence of beam, do not alter the tendency in all cases for the beam to cause a radius 
increase, with decreasing rate of increase at higher beam currents. 

As an example, the question of how the magnetic field strength might affect the 
observed plasma expansion was addressed in one short run, where three fields 
extending up to the strength limit of the present trap were used. For this run the rotating 
dipole field was set at 0.48 MHz, where heating of the plasma by the motor field is 
weakened, with a fixed large amplitude. Data at the 0.144 T level is sparse because that 
field value was studied more extensively in other beam exposures. The general trend of 
a rise at low beam current with saturation at higher current was observed for all three 
fields, but the initial slope was steeper for higher fields, as was the equilibrium radius in 
the absence of beam. The data are presented in Figure 5. 
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BEAM - PLASMA POWER 

The transfer of energy from beam to plasma is seen as a drop in the power applied 
to maintain a time-independent state. However the power input to maintain the plasma 
depends markedly on the stabilization mechanism. An example is shown in Figure 6. 
If N' is held fixed, beam heating is indicated by the negative slope. However if plasma 
potential is regulated, a strong "cooling" is indicated by the positive slope. 

If the plasma potential is held constant, increasing radius requires a higher line 
density N' = N/L with increasing beam. As shown in Figure 1, the power input grows 
with N' so this regulation method should exhibit a power demand increasing with beam 
current as though the beam were cooling the plasma. However the observed cooling is 
too strong for quantitative agreement with this explanation. 

In contrast, if N' is held fixed, the strong "cooling" is eliminated, the power input 
from the coasting beam is near zero at currents below 0.2 mA, while the bunched beam 
adds a collective heating term, quadratic in beam current. For higher beam currents 
Figure 6 shows that even the coasting beam may be developing a collective enhancement 
above 0.2 mA. The plasma shows new features at beam currents above 0.5 mA which 
are not included in the above data sample, including a step drop in radius at a current 
between 0.5 and 1 mA, accompanied by fluctuations in plasma power demand 
(turbulence?) and sensitivity to details of storage ring setup. Plasma has been 
maintained with coasting beams up to 2.5 mA, with luminosity (beam particles/s X 
plasma electrons/cm2) above 1025 Cm-2 s-'. However the stability and controllability 
are less satisfactory than in the region beolw 0.5 mA. 

FUTURE DIRECTIONS 

The observed transfer of both energy and angular momentum from a fast beam to a 
trapped nonneutral electron plasma may be counteracted to some extent. An electron 
plasma may tolerate power input by operating at higher trap magnetic fields, where 
radiation cooling is faster. A superconducting solenoid trap of 1.75 T is being 
commissioned which will raise the cooling rate by a factor of fifty. Magnetic and UHV 
components are completed, and the electrode structure is being machined. 

The torque input may be better tolerated by exploiting resonant enhancement of the 
torque associated with the launching of helical charge density waves (4). For study of 
waves of the form cos (me6-mz7rz/L) with m6, mz = 1, 2, a newly-constructed swept 
rotating signal source and frequency-agile phase sensitive detector are allowing a 
systematic exploration of the plasma response in transmission mode. Figure 6 shows a 
representative sweep in dipole mode. Control and calibration of torque input to the 
plasma from study of such modes is just beginning. 
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FIGURE 7. A rotating electric field created by eight sector plates at one end of a long electron plasma 

is swept in frequency from 1 to 5 MHz in 0.1 s. Near the other end of the plasma, two opposite plates 

sense a dipole mode excitation in phase with the swept "motor" signal. Note the two narrow peaks at 

2.3 and 4.8 MHz where the plasma transmits strongly (mz = 1, 2?). A strong mg = 0 mode at 4.2 MHz 

is invisible. Overall signal gain in the "agile multiplier" chain is about +100 dB. 
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The Crystron: An Induction Accelerator 
for the Production of Crystalline Beams 

R. Blümel 

Department of Physics, Wesleyan University, Middletown, CT 06459-0155 

Abstract. The crystron, a combination of a quadrupole ring trap and a betatron, 
is a cyclic accelerator for the production and acceleration of crystalline beams. Re- 
alistic molecular dynamics calculations with up to 12,000 24Mg+ ions show that the 
acceleration process in the crystron is stable. Suppression of synchrotron radiation of 
crystalline beams is discussed. 

INTRODUCTION 

In 1985 Schiffer and Kienle suggested to produce crystalline beams of charged 
particles [1]. Since then the production of crystalline beams has been persued both 
experimentally and theoretically at many laboratories (see, e.g., [2-6]). Strong ex- 
perimental indications of ordered heavy ion chains have recently been reported by 
an experimental collaboration based at GSI in Darmstadt [6]. Based on molecular 
dynamics calculations Hasse was able to confirm that the ions in the GSI exper- 
iments are indeed longitudinally ordered, but may still be hot in the transverse 
direction [7]. Due to shear forces [8] it may be difficult to produce crystalline 
beams with nonzero width in the transverse direction (3D crystals) in existing par- 
ticle accelerators and storage rings. The crystron, a combination of a quadrupole 
ring trap [9-11] and a betatron [12] avoids the problem with shear forces. Detailed 
molecular dynamics calculations of ion chains and some simple 3D crystals show 
[13] that the crystron is indeed able to produce fast crystalline beams. Crystalline 
beams are interesting for many reasons [2]. Among others they are the ultimate 
examples of high quality, high brilliance beams. Moreover, crystalline beams show 
interesting radiation characteristics, for instance a suppression effect [14,15] that 
may be of technical interest for the construction of smaller cyclic accelerators. 

THE CRYSTRON 

Figure 1 shows a schematic sketch of the crystron. It consists of a betatron (B) 
[12] and a quadrupole ring trap (T) [9-11].  The ring trap is a quadrupole mass 
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filter [16] bent into the shape of a torus. It is located in the gap G between the poles 
P and Q of a betatron magnet with induction coil C. The air gap A in the central 
post of the crystron may be used to satisfy the betatron condition [12]. Production 
and acceleration of a crystalline beam in the crystron proceeds according to the 
following four steps: 

1. The betatron is switched off, i.e., the current in the coil C is zero. The 
quadrupole ring trap is switched on and loaded with charged particles. The 
particles accumulate in the ring trap and form a hot nonneutral plasma. 

2. A cooling mechanism is now applied to the hot plasma in order to reduce its 
temperature and to crystallize the particles. The experimental feasibility of 
this step has already been demonstrated experimentally [9,10]. 

3. As soon as crystallization is achieved, the cooling devices arc switched off. 
This step does not destroy the crystal, since rf heating in the crystalline state 
vanishes [17]. 

4. The current in the coil C is now ramped up producing an induced azimuthally 
directed electric field that accelerates the Coulomb crystal in the trap T. 

The above four steps have been carefully modelled numerically with detailed 
classical molecular dynamics calculations of up to 1,000 24Mg+ ions [13]. It was 
shown that the acceleration stage in the crystron is stable, not increasing the initial 
temperature of the crystal. Although the main focus of [13] was the acceleration 
of crystalline chains of ions, a few runs with more complicated 3D crystals (mainly 
zig-zags and helices) showed that the acceleration stage is also stable for 3D crys- 
tals. This is so, because there are no shear forces in a circular accelerator such as 
the crystron. Because the crystron is based on the principle of a circular induction 
accelerator, there is also no accelerator lattice to consider, which may heat and 
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FIGURE 1. Schematic sketch of the crystron. 
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shear the crystal. This explains the excellent performace of the crystron for accel- 
erating Coulomb crystals. Recently, a run with 12,000 24Mg+ ions confirmed the 
results of the earlier 1,000 ion calculations. The 12,000-ion run already models a 
realistic situation, since for an ion spacing of ~ 30 /xm used in the calculations, the 
corresponding crystron has a diameter of 11.5 cm, the exact dimension of existing 
quadrupole ring traps [9-11]. 

SUPPRESSION OF SYNCHROTRON RADIATION 

More than half a century ago Schiff [18] discussed the suppression of synchrotron 
radiation of crystalline beams for enhancing the performance of particle accelera- 
tors. In Schiff's time, no mechanism was known to produce and maintain crystalline 
beams. With the advent of powerful cooling schemes such as electron and laser cool- 
ing [2] this situation has changed dramatically. Thus it may be time to re-evaluate 
Schiff's proposal and perhaps apply it for the construction of more efficient particle 
accelerators. 

Consider a point charge q in a circular orbit of radius r with angular frequency u 
and corresponding angular speed v = wr. The total emitted electromagnetic power 
of the point charge is given by [19] 

Pd) = _£_££: (i) 
O7reo    rz 

where ß = v/c, 7 = l/\/l - ß2 and c is the velocity of light. Due to the periodicity 
of the motion, the charge radiates into modes with frequencies u)n = nu> with partial 
powers PW. Thus the total emitted power (1) can be written as a sum of the partial 
powers pW according to 

00 

p(i) = £P(i). (2) 
71=1 

An explicit expression for the partial powers is derived, e.g., in [20] and given by 

p(D=     ^ 
27re07 r 

ß^nJ^nß) - n2 f J^nfld* 
Jo 

(3) 

where Jn are the ordinary Bessel functions of the first kind [21]. Let us now consider 
the case of N charged particles in a circular orbit of radius r. If the particles are 
randomly distributed on the orbit, the total emitted power is 

00 

Ä™ = ATP« = AT £ P«, (4) 
n=l 

as expected. If, however, the particles are equi-spaced along the circular orbit, i.e., 
if they form a crystalline chain, then the total emitted power of the N particles is 
given by [19] 

00 

m=l 
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If (asymptotically) P^ is a rapidly decaying function of n, as it actually turns 
out to be in both the relativistic and the nonrelativistic regimes, then the emitted 
electromagnetic radiation of the crystalline beam may be considerably suppressed 
with respect to the radiation of a disordered beam. We define 

p(N) 

« = #• (6) 
random 

Enhancement of radiation corresponds to a > 1, suppression to a < 1. In order to 
get a feeling for the behavior of a, let us consider a model for P,W that reflects the 
actual behavior of (3) very well: 

P™ = P0 exp(-An), (7) 

where A is a real number. For this model we have 

a = N2 £"=» P^N = iVexp[-A(7V - 1)]/ ~ ^"^ < Wexp[-A(^ - 1)]. 
NYZ^IPP ;jl-exp(-A7V) - VL     <■ ;J 

(8) 
The right hand side of (8) is is a simple expression that is known to be less than 1 
from some N = N0(X) on. Therefore, for a chain of charged particles, suppression 
of synchrotron radiation always occurs if the length of the chain exceeds N0(X). 

DISCUSSION 

So far only an ideal version of the crystron was studied using realistic molecular 
dynamics simulations. In order to show that the crystron can successfully be built 
and operated as an actual machine in the laboratory, several problems have to be 
addressed. An actual machine, e.g., will not have the ideal homogeneous fields 
assumed in the molecular dynamics calculations [13]. Fortunately this problem can 
be studied in detail, again using molecular dynamics simulations, but this time 
introducing small field distortions. A more fundamental problem is the induction 
of azimuthal and eddy currents in the ring trap's electrodes while ramping up the 
magnetic field in the crystron. While the azimuthal current can be eliminated by a 
gap in the trap's electrodes, eddy currents remain a problem. Another problem con- 
cerns the emission of photons. Although the emission of electromagnetic radiation 
by the circulating crystal should be suppressed, some photons will still be emitted. 
This causes recoil momentum to be transferred to the particles of the crystalline 
beam and may heat the beam to the point where it melts or disrupts. Fortunately 
this process can be studied in detail, again using molecular dynamics calculations. 
Such calculations have been done before in a similar context [22]. Especially at low 
beam temperatures, quantum effects, too, may become important. This, however, 
is expected to be of relevance only for crystalline electron or positron beams. 
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SUMMARY AND CONCLUSIONS 

Based on detailed microscopic molecular dynamics calculations of up to 12,000 
24Mg+ ions it was shown that an ideal version of the crystron is capable of producing 
fast crystalline beams. Questions concerning performance and stability of possible 
laboratory implementations of the crystron are currently under active investiga- 
tion. The crystron is an ideal testing ground for the investigation of the radiation 
characteristics of one- and three-dimensional crystalline beams. The crystron may 
also be a first step towards more efficient circular accelerators that make full use of 
the phenomenon of the suppression of synchrotron radiation of crystalline beams. 
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SECTION 6 

STRONGLY COUPLED PLASMAS 



Crystalline Order in Strongly Coupled 
Ion Plasmas* 
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Abstract. Laser-cooled trapped ions can be strongly coupled and form crystalline 
states. This manuscript reviews experimental studies which measure the spatial cor- 
relations of Be+ ion crystals formed in Penning traps. Both Bragg scattering of the 
cooling-laser light and spatial imaging of the laser-induced ion fluorescence are used 
to measure these correlations. In spherical plasmas with more than 2 x 105 ions, 
body-centered-cubic (bcc) crystals, the predicted bulk structure, are the only type of 
crystals observed. The orientation of the ion crystals can be phase-locked to a rotat- 
ing electric-field perturbation. With this "rotating wall" technique and stroboscopic 
detection, images of individual ions in a Penning trap are obtained. The rotating wall 
technique also provides a precise control of the time-dilation shift due to the plasma 
rotation, which is important for Penning trap frequency standards. 

INTRODUCTION 

This manuscript summarizes recent progress on the study of strongly coupled ion 
plasmas in Penning traps. It is similar to the review in the conference proceedings 
of Ref. [1] and contains more background material on Bragg-scattering results than 
Ref. [2], which focuses on results obtained from real images of the ion crystals. 

Trapped ions are a good example of a one-component plasma (OCP). An OCP 
consists of a single charged species immersed in a neutralizing background [3]. In 
an ion trap, the trapping fields provide the neutralizing background [4]. Examples 
of OCPs include such diverse systems as the outer crust of neutron stars [5] and 
electrons on the surface of liquid helium [6]. The thermodynamic properties of the 
classical OCP of infinite spatial extent are determined by its Coulomb coupling 
constant [3] 
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which is a measure of the ratio of the Coulomb potential energy of nearest neighbor 
ions to the kinetic energy per ion. Here, e0 is the permittivity of the vacuum, e 
is the charge of an ion, kg is Boltzmann's constant, T is the temperature, and 
aWs is the Wigner-Seitz radius, defined by A-n(aWsfl'i = l/n0, where n0 is the ion 
density. For low temperature ions in a trap, n0 equals the equivalent neutralizing 
background density provided by the trapping fields. Plasmas with T > 1 are called 
strongly coupled. The onset of fluid-like behavior is predicted at T « 2 [3], and 
a phase transition to a body-centered-cubic (bcc) lattice is predicted at T « 170 
[3,7]. From a theoretical perspective, the strongly coupled OCP has been used as 
a paradigm for condensed matter for decades. However, only recently has it been 
realized in the laboratory [8]. 

Experimentally, freezing of small numbers (N < 50) of laser-cooled atomic ions 
into Coulomb clusters was first observed in Paul traps [9-11]. With larger numbers 
of trapped ions, concentric shell structures were observed directly in Penning [12] 
and linear Paul [13,14] traps. The linear Paul traps provided strong confinement in 
the two dimensions perpendicular to the trap axis and very weak confinement along 
the trap axis. This resulted in cylindrically shaped plasmas whose axial lengths are 
large compared to their cylindrical diameters. Cylindrical-shell crystals which are 
periodic with distance along the trap axis were observed. The diameter of these 
crystals was limited to ~10 aWs in Ref. [13] and ~30 aWs in Ref. [14], presumably 
due to rf heating [15] which is produced by the time-dependent trapping fields 
and increases with the plasma diameter. These plasma diameters appear to be too 
small to observe the 3-D periodic crystals predicted for the infinite, strongly coupled 
OCP. Strong coupling and crystallization have also been observed with particles 
interacting through a screened Coulomb potential. Examples include dusty plasma 
crystals [16] and colloidal suspensions [17,18]. 

Because Penning traps use static fields to confine charged particles, there is no rf 
heating. This has enabled ion plasmas which are large in all three dimensions to be 
laser-cooled. For example, we have laser-cooled ~ 106 Be+ ions in an approximately 
spherical plasma with diameter ~ 200aws- With these large ion plasmas we have 
used Bragg scattering of the cooling laser light to detect the formation of bcc 
crystals [19,20], the predicted state for a bulk OCP with T > 170. In addition, 
we have studied the spatial correlations in planar, lens-shaped plasmas with axial 
thickness ;$ lOaws- These plasmas consist of extended, two dimensionally periodic 
lattice planes. The importance of the plasma boundary in this case results in 
different crystalline structures depending on the details of the plasma shape. 

A potential drawback of the Penning trap versus the rf trap is that the ions rotate 
about the trap magnetic field, and this has previously prevented the imaging of the 
ion crystals as done in Paul traps. This is because the rotation, created by the E xB 
drift due to the radial electric and the trap magnetic fields is, in general, not stable. 
For example, fluctuations in the plasma density or shape produce fluctuations in 
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field (top-view) 

++ 

compensation 
electrodes (6x60°) 

FIGURE 1. Schematic view of the cylindrical trap with real space imaging optics for the 

side-view camera and Bragg diffraction detection system for the axial cooling beam. The size 

of the plasma is exaggerated. Cross section of the rotating quadrupole field (in the x-y plane) is 

shown in the insert. From Ref. [21]. 

the ion space-charge fields which change the plasma rotation. However, we are able 
to phase-lock the rotation of the laser-cooled ion crystals to a rotating electric-field 
perturbation [21,22]. The success of this "rotating wall" technique enables us to 
strobe the cameras recording the ion fluorescence synchronously with the plasma 
rotation and obtain images of individual ions in the plasma crystals [23]. 

Figure 1 is a schematic of the cylindrical Penning trap we use to confine 9Be+ 

ions. The trap consists of a 127 mm long vertical stack of cylindrical electrodes 
with an inner diameter of 40.6 mm, enclosed in a room temperature, 10~8 Pa 
vacuum chamber. The uniform magnetic field B0 = 4.46 T is aligned parallel to 
the trap axis within 0.01° and produces a 9Be+ cyclotron frequency ft = 2ir x 7.61 
MHz. A quadratic, axially symmetric potential (mtol/2e)[z2 — r2/2] is generated 
near the trap center by biasing the central electrodes to a negative voltage — V0. 
At V0 = 1 kV, the single-particle axial frequency uz = 2ir X 799 kHz and the 
magnetron E x B drift frequency wm — 27T x 42.2 kHz. The trapped Be+ ions 
are Doppler laser-cooled by two 313 nm laser beams. The principal cooling beam 
(waist diameter ~ 0.5 mm, power ~ 50 /^W) is directed parallel to B0. A second, 
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typically weaker cooling beam with a much smaller waist (~ 0.08 mm) is directed 
perpendicularly to BQ (not shown in Fig. 1). This beam can also be used to vary 
the plasma rotation frequency by applying a torque with radiation pressure. With 
this configuration, ion temperatures close to the 0.5 mK Doppler laser-cooling limit 
are presumably achieved. However, experimentally we have placed only a rough 10 
mK upper bound on the ion temperature [24]. For a typical value of n0 — 4 x 108 

cm-3, this implies V > 200. 
Two types of imaging detectors were used. One is a charge-coupled-device (CCD) 

camera coupled to an electronically gateable image intensifier. The other is an 
imaging photomultiplier tube based on a microchannel-plate electron multiplier and 
a multielectrode resistive anode for position sensing. For each detected photon, the 
position coordinates are derived from the current pulses collected by the different 
electrodes attached to the resistive anode. This camera therefore provides the 
position and time of each detected photon. However, in order to avoid saturation, 
we placed up to 20 dB of attenuation in front of this camera to lower the detected 
photon counting rate to less than ~ 300 kHz. 

In thermal equilibrium, the trapped ion plasma rotates without shear at a fre- 
quency wr, where uim < wr < fi — wm [25,26]. For the low temperature work 
described here, the ion density is constant and given by n0 = 2e0mu>r(Q — wr)/e2. 
With a quadratic trapping potential the plasma has the simple shape of a spheroid, 
z2jzl + r2/rl = 1, where the aspect ratio a = z0/r0 depends on wr [24,26]. This 
is because the radial binding force of the trap is determined by the Lorentz force 
due to the plasma's rotation through the magnetic field. Thus low wr results in a 
lenticular plasma (an oblate spheroid) with large radius. As wr increases, r0 shrinks 
and z0 grows, resulting in an increasing a. However, large u>r (wr > Q/2) produces 
a large centrifugal acceleration which opposes the Lorentz force, and lenticular plas- 
mas are once again obtained for u)r ~ fi — um. In our work, torques from a laser or 
a rotating electric field control wr and therefore the plasma density and shape. The 
plasma shape is observed by imaging the ion fluorescence scattered perpendicularly 
to B0 with an f/5 objective. (See Fig. 1.) All possible values of wr from wm to 
ft — u>m have been accessed using both methods of applying a torque [22,27,28]. 
Azimuthally segmented compensation electrodes located between the main trap 
electrodes are used to apply the rotating electric-field perturbation. Both rotating 
quadrupole (see inset in Fig. 1) and dipole fields (not shown in Fig. 1) have been 
used to control usr. Below we explain how the rotating quadrupole field provides 
precise control of wr. 

BRAGG SCATTERING 

BCC Crystals 

An infinite OCP with T j£ 170 is predicted to form a bec lattice. However, the 
bulk energies per ion of the face-centered-cubic (fee) and hexagonal-close-packed 

356 



in 
FIGURE 2. Bragg diffraction patterns from a plasma phase locked to a rotating quadrupole 
field (wr = 2TT x 140 kHz, n0 « 4.26 x 10s cm-3, a fa 1.1). (a) 1 s time-averaged pattern. The 
long rectangular shadow (highlighted by solid lines) is from the deflector for the incident beam; 
four line shadows (highlighted by dashed lines) that form a square are due to a wire mesh at 
the exit window of the vacuum chamber. The small open circle near the center of the figure 
marks the position of the undeflected laser beam, (b) Time-resolved pattern obtained nearly 
simultaneously with (a) by strobing the camera with the rotating field (integration time sa 5 s). 
A spot is predicted at each intersection of the rectangular grid lines for a bcc crystal with a [110] 
axis aligned with the laser beam. The grid spacings were determined from the n0 calculated from 
ur and are not fitted. From Ref. [22]. 

(hep) lattices differ very little from bcc (< 10~4) [29]. Because some of the fee 
and hep planes have lower surface energies than any of the bcc planes, a boundary 
can have a strong effect on the preferred lattice structure. One calculation [29] 
estimates that the plasma may need to be <; lOOaws across its smallest dimension 
to exhibit bulk behavior. For a spherical plasma this corresponds to ~ 105 ions. 

We used Bragg scattering to measure the spatial correlations of approximately 
spherical plasmas with N > 2 x 105 trapped Be+ ions [19,20]. The cooling-laser 
beam directed along the trap axis was used for Bragg scattering as indicated in Fig. 
1. First the plasma shape was set to be approximately spherical. (In early exper- 
iments this was done with the perpendicular laser beam; more recent experiments 
used the rotating wall.) The parallel laser beam was then tuned approximately 
half a linewidth below resonance, and a Bragg-scattering pattern recorded (~l-30 
s integration). The plasma was then heated and recooled, and another Bragg- 
scattering pattern was recorded. Because the 313 nm wavelength of the cooling 
laser is small compared to the inter-ion separation (~10-20 /im), Bragg scattering 
occurs in the forward (few degree) scattering direction. In order for a diffracted 
beam to form, the incident and scattered wave vectors k,- and ks must differ by 
a reciprocal lattice vector (Laue condition) [30]. In a typical x-ray crystal diffrac- 
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FIGURE 3. Histogram showing the numbers (not intensities) of peaks observed as a function 
of q ■ aws (defined in the text) for 30 time-averaged Bragg scattering patterns obtained on two 
different spherical plasmas with N > 2 x 105. The dotted lines show the expected peak positions 
for a bec crystal, normalized to the center of gravity of the peak at A (corresponding to Bragg 
reflections off {110} planes). From Ref. [20]. 

tion case, satisfying the Laue condition for many reciprocal lattice vectors requires 
that the incident radiation have a continuous range of wavelengths. Here the Laue 
condition is relaxed because of the small size of the crystal, so a crystalline Bragg 
diffraction pattern is frequently obtained even with monochromatic radiation. 

Figure 2(a) shows a time-averaged diffraction pattern obtained on a spherical 
plasma with N ~ 7.5 x 105. The multiple concentric rings are due to Bragg 
scattering off different planes of a crystal. A concentric ring rather than a dot 
pattern is observed because the crystal was rotating about the laser beam. In gen- 
eral, many different patterns were observed, corresponding to Bragg scattering off 
crystals with different orientations. Figure 3 summarizes the analysis of approxi- 
mately 30 time-averaged patterns obtained on two different spherical plasmas with 
N > 2 X 105. It shows the number of Bragg peaks as a function of the momentum 
transfer q=\ks — k; |= 2fc sm(9scatt/2) (~ k0scatt for 0scatt < 1), where k = 2-K/\ is 
the laser wave number and 6scatt is the scattering angle. The density dependence 
of the Bragg peak positions is removed by multiplying q by aws, which was deter- 
mined from ujr. The positions of the peaks agree with those calculated for a bec 
lattice, within the 2.5% uncertainty of the angular calibration. They disagree by 
about 10% with the values calculated for an fee lattice. The ratios of the peak 
positions of the first five peaks agree within about 1% with the calculated ratios 
for a bec lattice. This provides strong evidence for the formation of bec crystals in 
spherical plasmas with N > 2 x 105 ions. This result is significant because it is the 
first evidence for bulk behavior in a strongly coupled OCP in the laboratory. 
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Rotating Wall 

By strobing the camera recording the Bragg-scattering pattern synchronously 
with the plasma rotation, we should be able to recover a dot pattern from the 
time-averaged concentric ring pattern in Fig. 2(a). Initially we used the time 
dependence of the Bragg-scattered light to sense the phase of the plasma rotation 
[20,31]. More recently we used a rotating electric-field perturbation to phase-lock 
the ion plasma rotation [21,22]. 

Consider the rotating quadrupolar perturbation shown in the inset of Fig. 1. 
This ^-independent perturbation produces a small distortion in the shape of the 
spheroidal plasma. In particular, the plasma acquires a small elliptical cross section 
normal to the z-axis. (In our work the distortion created by the rotating quadrupole 
field was typically less than 1% of the plasma diameter.) The elliptical boundary 
rotates at the applied rotating wall frequency LOW. An ion near the plasma boundary 
experiences a torque due to this rotating boundary. If the ion is rotating slower than 
OJW, the torque will speed it up. If it is rotating faster than ww, the torque will slow 
it down. Through viscous effects, this torque is transmitted to the plasma interior. 
Therefore, if other external torques are small, the rotating wall perturbation will 
make wr equal UJW. Crystallized plasmas behave more like a solid than a liquid or 
gas. Because the viscosity is high, the whole plasma tends to rotate rigidly with its 
boundary. In particular, the orientation of the ion crystals can phase-lock to the 
rotating quadrupolar perturbation if the difference between wr and ww is small. 

To check for phase-locked control of uv, we strobed the camera recording the 
Bragg-scattering pattern in Fig. 2(a) with the synthesizer used to generate the 
rotating wall signal. Specifically, once each 27r/w„, period, the rotating wall signal 
gated the camera on for a period < 0.02(2TT/U;,„). The resulting Laue dot pattern in 
Fig. 2(b) shows that the plasma rotation was phase-locked to the rotating electric- 
field perturbation. The dot pattern provides detailed information on the number 
and orientation of the crystals which contributed to the Bragg-scattering signal. 
For example, the pattern in Fig. 2(b) was due to a single bcc crystal with a [110] 
axis aligned along the laser beam. For phase-locked operation of the rotating wall, 
other external torques must be small. For example, a misalignment of the trap 
magnetic field with the trap-electrode symmetry axis of > 0.01° prevented phase- 
locked control of the plasma rotation. In our work, alignment to < 0.003° was 
obtained by minimizing the excitation of zero-frequency plasma modes [27,28]. 

In addition to the rotating quadrupole perturbation, phase-locked control was 
also achieved with a uniform rotating electric field (a "dipole" field). In fact under 
many circumstances a uniform oscillating field worked equally well. In these cases 
the co-rotating component of the oscillating field controlled the plasma rotation, 
while the perturbing effects due to the counter-rotating component were minimal. 
For further discussion, see Ref. [22]. 
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FIGURE 4. Real-space images of an N ~ 1.8 x 105 ion plasma phase-locked with an oscillating 
dipole field at u>r = 2ir x 120 kHz. (a) Time-averaged side-view image showing the overall 
plasma shape. The bright line of fluorescence through the plasma center is due to a laser beam 
directed perpendicularly to B0. The plasma shape is approximately spherical. The presence of 
heavier-mass ions, which centrifugally separate from the 9Be+ ions, produces the straight vertical 
boundaries in the image, (b) Strobed top-view image, obtained simultaneously with (a), showing 
the presence of a bcc crystal in the plasma center. The distance scales in (a) and (b) are different, 
as noted. 

REAL-SPACE IMAGES 

Bragg scattering measures the Fourier transform of the spatial correlations of 
the trapped ions. It provides a picture of these correlations in reciprocal-lattice 
space. With phase-locked control of Lor, real-space imaging of individual ions in a 
Penning trap becomes possible. To obtain real-space images with high resolution, 
we replaced the Bragg scattering optics (see Fig. 1) with imaging optics, starting 
with an f/2 objective, which formed a real, top-view image of the ion plasma. The 
combined resolution limit of the optics and camera was less than 5 /im near the 
optimal object plane of the f/2 objective. This is less than the ~10 /urn resolution 
limit required to resolve individual ions. However, the depth of field of an f/2 
objective for 10 fim resolution is ~80 /im. For lenticular plasmas with 2z0 < 80 
/im, all of the ions within the plasma were resolvable. For plasmas with 2z0 > 80 
/im, the cooling-laser beam directed perpendicularly to B0 was used to illuminate 
a section of the plasma within the depth of field. 

Figure 4 shows side-view and top-view images of an approximately spherical 
plasma with N ~ 1.8 X 105. The fluorescence from the perpendicular laser beam 
used to highlight a small region of the plasma is clearly visible.   In the top-view 
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FIGURE 5. Strobed top-view images of a small (JV ~ 300 Be+) ion plasma phase-locked with a 
rotating dipole field at (a) ur — 2n x 65.7 kHz and (b) 66.5 kHz. Below are unstrobed side-views 
showing the axial lattice planes. Heavier-mass ions are located outside the 9Be+ ions. 

image a square grid of dots is observed near the plasma center. The measured 
spacing between nearest neighbor dots is 12.8 ± 0.3 yum, in good agreement with 
the 12.5 fim spacing expected for viewing along a [100] axis of a bcc crystal with 
density determined by the wr set by the rotating field. Real-space imaging provides 
direct information on the location and size of the crystals. In Fig. 4 the crystal 
was located in the radial center of the plasma and was at least 230 /mi across, or 
at least 1/4 of the plasma diameter. 

For lenticular plasmas with 2z0 < 80 fim, all of the ions within the plasma are 
resolved without the use of the perpendicular laser beam. Lenticular plasmas are 
obtained with wr slightly greater than wm. For small plasmas (N ^ 2000 ions) 
we were able to use the rotating-dipole electric field to lower u>r and obtain a 
single plane while maintaining long-range order in the top-view images. Figure 
5(a) shows top- and side-view images of such a plasma. Near the plasma center a 
2-D hexagonal lattice is observed, the preferred lattice for a 2-D system. Here each 
dot is the image of an individual ion. 

Starting with a single plane like that shown in Fig. 5(a), we studied the structural 
phase transitions that occur as wr is increased [23]. With increasing ur, the radial 
confining force of the Penning trap increases, which decreases r0. At a particular 
point, there is a structural phase transition near the plasma center from a single, 
hexagonal lattice plane to two lattice planes where the ions form a square grid in 
each plane, as shown in Fig. 5(b). Further increases in u>r increase the number of 
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ions per unit area of each plane as well as the spacing between the planes. During 
this process the square lattice planes smoothly change into rhombic lattice planes 
and eventually there is a sudden transition to hexagonal lattice planes. Further 
increases in u>r eventually produce a structural transition to three square lattice 
planes, and the basic pattern repeats. 

The structure of the crystallized ions depends sensitively on the projected areal 
density a of the plasma. The side- and top-view images were analyzed to char- 
acterize the phase structure. Within a layer, the structural order is characterized 
by the primitive vectors ai and a2 (which are observed to be equal in magnitude) 
and the angle 6 (< 90°) between them. The interlayer order is characterized by 
the axial positions zn of the n lattice planes (measured by the side-view camera) 
and the interlayer displacement vector cn between layers 1 and n. Hence, the equi- 
librium positions in the (x,y) plane of ions in axial planes 1 and n are given by 
Ri = isn + ja2 and Rn = iai + ja2 + cn, where i,j are integers. Three different 
types of intralayer ordering are observed: hexagonal (0 = 60°), square (0 = 90°) 
and rhombic (90° > 0 > 65°). The observations were compared to the results 
from Dubin [23], who performed an analytic calculation of the energies of lattice 
planes which are infinite and homogeneous in the (x,y) direction but are confined 
in the axial direction by a harmonic external electrostatic confinement potential 
4>e — l/2(m/e)w2z2. Since this potential is identical to the confinement poten- 
tial of a Penning trap as seen in the rotating frame in the a —► 0 planar limit, 
the minimum-energy phase structures predicted by the theory should match the 
structures observed in the central regions of the oblate plasmas of the experiments. 

Figure 6 displays the agreement between theory and experiment for the inter- 
layer quantities, with measurements taken on different plasmas with N < 104. 
Lengths have been normalized by aws2n — (3e2/47re0n^^)1^3 = 10.7 /im, which is 
the Wigner-Seitz radius in the planar limit. As the central areal density is increased 
the lattice planes move further apart axially in order to match their average density 
to the neutralizing background. Eventually it becomes energetically favorable to 
form an additional lattice plane. The symbols indicate whether the lattices had an 
interlattice displacement vector c2 characteristic of the hexagonal phases (triangles) 
or the square and rhombic phases (squares). 

Figure 7 displays the agreement between experiment and theory for the depen- 
dence of the angle 0 (between the primitive vectors) on central areal charge density 
a. The trend is that when a new lattice plane is formed, 0 changes discontinuously 
from « 60° to a higher value. As the central areal density of the crystal is fur- 
ther increased, 6 smoothly decreases to w 65° until there is a second discontinuous 
transition to a hexagonal structure. This latter transition has been predicted [32] 
to become continuous in liquid (T < 80) bilayer systems. The lines indicate the 
minimum energy structures predicted by the 2D theory. 
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DISCUSSION 

With Bragg scattering and spatial imaging, we have measured the correlations 
in both spherical and highly oblate strongly coupled 9Be+ ion plasmas. The planar 
geometry permits a detailed comparison with theoretical calculations. We have 
measured the preferred lattice structures for up to five lattice planes in lenticular 
plasmas and obtain good agreement with theory. Ions in a trap have been proposed 
as a register for a quantum computer [33]. Work in this area has focussed on a 
string of a few ions in a linear Paul trap [34]. A single lattice plane of ions as in Fig. 
5 could provide a 2-D geometry of trapped ions for studies of quantum computing 
or entangled quantum states. 

In spherical plasmas with more than 2 x 105 ions, we have observed the formation 
of bec crystals, the predicted state for the infinite strongly coupled OCP. The 
crystals occupied the inner quarter of the plasma diameter. Outside the crystal 
there was a complicated transition to shell structure. In this system we have not 
observed the thermodynamic liquid-solid phase transition predicted for the bulk 
OCP. The phase transition may take place in the present system, but we have 
experimentally missed detecting it. Or, possibly larger crystals (for example, where 
the number of ions in the crystal is large compared to the number of ions in the 
shells) may be required in order for a sharp phase transition to be exhibited. 

We have observed structures for which we do not have a good theoretical un- 
derstanding. Figure 8(a) shows an approximate fivefold Bragg-scattering pattern 
that was observed a number of times under different experimental circumstances. A 
fivefold Bragg-scattering pattern is characteristic of a quasi-crystal. However, more 
sets of dots would be present in a true quasi-crystalline Bragg-scattering pattern. 
We now think that the fivefold Bragg-scattering pattern of Fig. 8(a) is due to a 
structure like that shown in Fig. 8(b). Figure 8(b) is a top-view image of a lentic- 
ular plasma which consisted of four horizontal planes. Even though it is difficult 
to distinguish individual ions in this figure, it is possible to see that there are five 
distinct regions where the ions resided in vertical planes. The planes from these 
different regions form a five-sided structure that would produce a Bragg scattering 
pattern like Fig. 8(a). Once formed, this fivefold structure was stable. 

In addition to enhancing studies of Coulomb crystals, the phase-locked control 
of wr has improved the prospects of a microwave frequency standard based on a 
hyperfine-Zeeman transition of ions stored in a Penning trap. This is because the 
time-dilation shift due to the plasma rotation is one of the largest known systematic 
shifts in such a standard. Reference [35] discusses the potential frequency stability 
and accuracy of a microwave frequency standard based on 106 trapped ions. For 
ions such as 67Zn+ and 201Hg+, fractional frequency stabilities < 10_14/r1/2 with 
time-dilation shifts due to the plasma rotation of ~fewxlO~15 are possible. Here r 
is the measurement time in seconds. With phase-locked operation of the rotating 
wall, we think it should be possible to stabilize and evaluate the rotational time- 
dilation shift within 1%. Therefore the inaccuracy due to this shift would contribute 
a few parts in 10-17. 
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FIGURE 8. Fivefold Bragg scattering and real-space patterns obtained by strobing the intensi- 
fied CCD camera synchronously with the rotating electric field perturbation, (a) Bragg scattering 
pattern obtained on an JV ~ 1.2 x 105 ion plasma phase-locked with a rotating dipole field at 
wr = 2TT x 166.84 kHz. Here V0 - 500 V and a - 2.6. (b) Real-space image of a lenticular plasma 
consisting of 4 horizontal planes in the plasma center. The rotating dipole field was used to set 

wr = 2TT x 74.35 kHz. 
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Abstract. We present the first experiment to observe an ultracold neutral plasma. 
The plasma, which was created by photoionization of laser cooled atoms, has charge 
densities as high as 2 x 109cm-3, and the temperatures of electrons and ions are as 
low as 100mK and 10 /xK, respectively. The plasma has a lifetime of about 100 fj,s, 
much longer than predicted by recombination rates. When the laser that excites the 
atoms is tuned below the ionization limit we create a sample of very highly excited 
cold Rydberg atoms. At our highest densities and during a time of a few microseconds, 
in which the Rydberg atoms are essentially stationary, the ensemble evolves towards 
an unbound plasma-like state. 

INTRODUCTION 

Creating a neutral plasma at very low temperatures has for many years been 
an experimental challenge. By photoionizing a sample of laser cooled atoms we 
obtain a plasma that has electron temperatures as low as Te = 100 mK and ion 
temperatures as low as T,- = 10 /uK. The density of the ultracold plasma is as 
high as 2 x 109 cm-3. This new plasma is well suited to investigate and perhaps 
answer questions that are also important for nonneutral plasmas. The three-body 
recombination rate at low temperatures, for instance, is of great relevance for the 
success of the various antihydrogen projects underway [1]. Also, for both electrons 
and ions, the Coulomb interaction energy between nearest neighbours exceeds the 
the initial thermal energy of the particles. 

This paper is organized as follows: In part I we introduce the atomic system 
and describe the experimental setup. We then discuss the temporal sequence of 
the experiment, and present the data. In section II, we develop a simple model 
that explains the experimental results and we discuss a numerical simulation that 
reproduces the data. The characteristics of the plasma are given in section III. The 
plasma opens the way to a number of interesting new experiments, some of which 
we shall briefly mention in section IV. We conclude by considering the possibility 
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of obtaining such a cold plasma during a phase transition from a dense sample of 
highly excited, cold Rydberg atoms. Preliminary experimental results are shown. 

THE ATOMIC SYSTEM AND THE 
EXPERIMENTAL SETUP 

The heart of our experiment is a sample of laser cooled metastable xenon atoms. 
The metastable 6s[3/2]2 state in xenon has an optical dipole transition at 882 nm 
to the 6p[5/2]3 state. The lifetime of this lower state is 43 s [2] and can therefore be 
treated as the ground state for laser cooling. The metastable atoms are produced 
in a gas discharge, and after deceleration using the Zeeman slowing technique, the 
atoms are collected in a magneto-optical trap. Further cooling by optical molasses 
reduces the temperature of the atoms to approximately 10 (iK. This slowing and 
trapping sequence is described in detail in [3]. The number of cold atoms and the 
size of the cloud can be determined by optical absorption imaging [4]. Typically we 
prepare samples of a few million atoms at a density of 2 x 10locm~3. The spatial 
distribution is Gaussian with a rms radius er ~ 200 /J,m. 

To produce a plasma, a fraction of the cold atom sample is photoionized. The 
photoionization process requires two photons. The first photon at 882 nm is reso- 
nant with the cooling transition. From the 6p[5/2]3 state a green photon at 514nm 
excites the atoms to states at the ionization potential or above. In the experiment, 
the infrared light is provided by a Tirsapphire laser. The green light is supplied 
by a pulsed dye laser, that is pumped by a pulsed frequency tripled Nd:YAG laser. 
One laser pulse lasts approximately 10 ns and carries about 1 mJ of energy. We 
can ionize up to 10% of the cold atoms, which corresponds to an ion (and also an 
electron) density n = 2 x 109cm~3. The number of atoms photoionized increases 
linearly with the green laser intensity. 

An externally applied electric field directs the electrons towards a single channel 
electron multiplier and the ions towards a microchannel plate. The neutral atoms 
fall free and are also recorded on the microchannel plates. 

The temporal sequence of each experimental cycle is described below. First, 
the atoms are laser cooled and a small electric field of approximately 5mV/cm 
is applied. The atoms are then photoionized. Fig. 1 shows the recorded electron 
signal for four different green laser pulse energies. The photoionization occurs at 
time t = 0. A first pulse of electrons arrives at the detector after about 500 ns of 
time of flight. If the green laser pulse has enough energy, the first peak develops 
a tail and a second peak appears when the electric field is linearly increased a few 
microseconds later. During this time the ions are essentially stationary. They arrive 
and are detected on the microchannel plates about 300^s after photoionization. 
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II    MODEL AND NUMERICAL SIMULATION 

The experimental data presented in Fig.l are explained by a simple physical 
picture (see schematic in Fig. 2). Immediately after photoionization, the charge 
distribution is everywhere neutral but electrons and ions have acquired kinetic en- 
ergy. This energy comes from the difference in energy AE between the energy of 
the green photon and the ionization potential. Because of the large mass ratio be- 
tween ions and electrons (2.4 x 105) most of the energy AE is taken by the electrons 
in the form of kinetic energy. Therefore the electron cloud begins expanding, and a 
local charge imbalance builds up. The resulting internal electric field establishes a 
Coulomb potential energy well for electrons. The depth of this well is proportional 
to the number of electrons that have escaped. If the well never becomes deeper 
than their initial kinetic energy, all electrons escape. This is the case for the upper- 
most curve in Fig. 1. If many more atoms are photoionized, however, only an outer 
shell of electrons escapes and the well becomes deep enough to trap the rest. Inside 
the well, electrons will thermalize through collisions within 10 - 100 ns [6]. During 
this energy redistribution process, some particles acquire energies larger than the 
trap depth and will leave the well. This process of evaporation explains the tail of 
the first peak in the electron signal. As electrons continue to leave the trap, the 
depth of the potential well increases and eventually evaporation slows down. The 
remaining electrons stay in the well until an external electric field overcomes the 
trapping potential. They constitute the second peak that appears in Fig. 1. 

According to the model described above, all electrons leave unless the potential 
well created by the positive ions exeeds the kinetic energy (~ AE) of the electrons. 

0.15 

4 
Time [/is] 

FIGURE 1. Electron time of flight signals. Photoionization occurs at t = 0. The initial kinetic 
energy of the electrons is AE/kß — 0.6 K. The uppermost curve corresponds to the lowest pulse 
energy of the green laser (charged particle density n « 105cm-3), and the bottom curve to the 
the highest pulse energy (n « 107cm~3). The data is averaged over 20 consecutive experimental 
cycles. Also shown is the magnitude of the applied electric field. 
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FIGURE 2. Schematic of the potential energy seen by a test electron when enough atoms arc 

photoionized to result in trapping of electrons. At t0 = 0 when photoionization occurs, the 

sample is everywhere neutral. Because of their kinetic energy some electrons leave and the charge 

imbalance yields a potential well. At <i « 10 ns the depth of the well equals the initial kinetic 

energy, trapping the remaining electrons. Electrons in the well thermalize, evaporation occurs 

and the well depth increases. By t2 « 1 fis evaporation essentially stops. The bottom of the 

well is flat due to Debye screening. The dashed line indicates the average kinetic energy of the 

electrons. 

For a given AE this suggests a threshold number of photoions required to trap 
electrons. In the experiments, we can control the values of AE by varying the 
green laser frequency. We found that the number of ions required to trap electrons 
increases as the kinetic energy of the electrons increases. This threshold behaviour 
appears clearly in a plot of the fraction of electrons trapped versus the number of 
photoions created, and is shown in Fig. 3a. 

The number N* of positive ions at the threshold can be readily estimated, con- 
sidering that the spatial distribution of the charges is Gaussian. At threshold the 
well depth of the potential energy of a. cloud of A'* ions equals the kinetic energy 
of the electrons: N*U0 - AE. Here U0 is the depth of a potential well created 
by a Gaussian spatial distribution of total charge equal to the elementary charge e 
[5]. Over a large range of electron kinetic energies, this simple relation describes 
well the onset of trapping for the data shown in Fig. 3a. This behaviour becomes 
more evident when the number of photoions produced is scaled by N*. As shown 
in Fig. 3b all data fall on one curve, which is reproduced by a numerical integration 
of the equations of motion [7]. 

In the model we have so far included the Coulomb interaction between electrons 
and ions, and rethermalization of electrons in the well through collisions. The inter- 
action between opposite charges explains the trapping of electrons by the positive 
ion cloud. Evaporation of electrons from the well suggests that the temperature of 
the electrons is Te < AE/kß, a result which is confirmed by the numerical simu- 
lation. We have neglected collisons which lead to equipartition of energy between 
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N N/N* 
FIGURE 3. (a) Fraction of electrons trapped versus number of photoions created. Each curve 
corresponds to a different green laser frequency, i.e. a different initial kinetic energy of the 
electrons, (b) Same as (a) but the number of photoions is scaled by JV*, the estimated threshold 
for trapping. The line is the result of a numerical simulation. There is a scale uncertainty of 
about 10% in determining the fraction of electrons trapped. 

electrons and ions. For our experimental conditions, this process requires tens of 
ms [6], a time much longer than the duration of the experiment. Also, collisions 
between charged particles and neutral atoms may occur, but in the experiment we 
see no evidence of such interactions. The mean free path for atom-charged particle 
collisions is much larger than the size of the sample [8-10]. 

A complete model should also discuss the properties and the evolution of the 
positive ions. Their initial temperature is easily estimated. For excitation close to 
the ionization potential the energy imparted to the ions is negligible compared to 
the initial kinetic energy of the atoms. Therefore the minimal initial temperature is 
10 fj,K. For large values of AE the temperature is given by 4 x 10~6 AE/kj3, which 
corresponds to 4mK for AE/kß = 1000 K. Also, after the untrapped fraction of 
electrons has escaped the charge imbalance leads to a Coulomb expansion of the 
cloud. The potential well depth decreases and formerly trapped electrons will be 
able to escape. This limits the time during which the electrons can be held in the 
trap. However, the electrons escape most easily from the outer edges of the spatial 
distribution', and for N > N* the center of the cloud is still neutral, a behaviour 
that also appears in the simulation. The presence of the electrons screens the 
Coulomb interaction between ions causing the expansion of the cloud to be slowed 
compared to that of a bare cloud of positive ions. For instance, a cloud of 5000 
ions, initially with a = 200 jum reduces its well depth by a factor of two within 
a few microseconds. Experimentally, we observed that a cloud of 5000 photoions 
with only 10% charge imbalance holds half of the initially trapped electrons for 

about 100 /us. 
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Ill    THE ULTRACOLD PLASMA 

Both the model and the simulation discussed above describe well the ionized gas 
that we obtain by photoionizing the laser cooled atoms. At this point one may ask 
whether this system is a plasma. Traditional plasmas are often defined in terms of 
the Debye screening length. An ionized gas is a plasma when the size of the sample 
is larger than the Debye length [11]. In our experiments the Debye length, which is 

given by Ay = •v/c0/cgTc/e2n, can be as low as 500nm, while the size of the sample 
is about 200/im. 

The threshold condition N = N* for electrons to be trapped is mathematically 
equivalent to Xp — a. If N > N* electrons are trapped by an internal electric 
field in the ion cloud. Equivalently if \D < a, any displacement of electrons from 
their equilibrium positions due to their thermal energy is counterbalanced by the 
local internal electric field; a plasma is formed. If jV < N*, the well depth of all 
the photoions is smaller than the kinetic energy of the electrons and they all leave. 
This condition is equivalent to \p > a, which means that the electrons are free to 
escape. 

The low temperatures of the electrons and ions allow access to a new region 
of parameter space of neutral plasmas. The Coulomb interaction energy between 
nearest neighbours can be less than the thermal energy of the particles. This 
situation is characterized quantitatively by the Coulomb coupling parameters [12] 
re = (e2/(4ne0a))/(kBTe) for electrons and T, = e-^^F.TJT, for ions. Here a = 
(47rn/3)-1'3 is the Wigner-Seitz radius. The exponential factor in the expression 
of T, is due to the shielding of the ion-ion interaction by electrons. Plasmas that 
are in a state of thermal equilibrium and for which T > 1 are known as strongly 
coupled plasmas [12]. In our experiment, densities and temperatures can be such 
that the numerical values of the coupling parameters are Te = 10 and I\ = 1000. 
However, electrons and ions are not in thermal equilibrium, but they each have 
thermalized with themselves. 

IV    FUTURE EXPERIMENTS 

The properties of traditional plasmas, in which the temperature spans a range 
from 1016K to 300K have been extensively studied [11]. At lower temperature 
the properties of a plasma, and in particular the recombination rates are expected 
to change. At high temperatures three-body recombination processes have a very 
strong temperature dependence (oc T~9//2) [13] and can exceed the radiative re- 
combination rate (oc T-1/2) only at very high densities (> 1016cm-3) [14]. An 
extrapolation to the conditions in our experiment results in radiative recombina- 
tion times of tens of seconds and three-body recombination times of nanoseconds 
(for Te = 1 K and n = 2 x 108cm-3). The long lifetimes we observed (ss 100/us) 
suggest that the theory, and also an extension to T m IK [15], is no longer valid. 

372 



Studies of the three-body recombination rate in the ultracold plasma are currently 

under way. 

With this new plasma a series of interesting experiments can be performed. 
Plasma oscillations, which have frequencies of up to 400 MHz can be used to deter- 
mine the density distribution of the system. Magnetic confinement may be used to 
increase the lifetime of the plasma. Also thermalization and evaporative cooling of 
electrons need further study. In the current experimental setup, the lowest initial 
temperature of the electrons is 100 mK, and is limited by the bandwidth of the 
green laser (0.07cm-1). This temperature could be reduced to about 10mK by 
using a laser with a bandwidth equal to the Fourier transform of a 10 ns pulse. 

Instead of photoionizing the cold atoms, one can tune the laser below the ion- 
ization potential and excite the atoms into very high lying Rydberg states. Such a 
dense cold gas of Rydberg atoms may undergo a phase transition to a plasma-like 
state [16]. We have performed preliminary experiments aimed to verify this pre- 
diction. The time sequence of these experiments is the same as the one described 
earlier for the plasma creation. The only difference is that the magnitude of the 
ramped electric field must be higher in order to be able to field-ionize the bound 
Rydberg states. Fig. 4a shows the electron signal recorded for two different densi- 
ties of cold Rydberg atoms. At low density the large double peak in the signal is 
due to field-ionized Rydberg atoms.  At higher densities an early peak of weakly 
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Arrival time (us) 
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Initial Rydberg atom density (cm" ) 

FIGURE 4. Excitation of laser cooled atoms into Rydberg states with principal quantum num- 
ber 140. (a) Electron time of flight signals recorded for two different densities. At lower density, 
n = 5 x 106cm-3, the signal consists mainly of electrons from field-ionized Rydberg atoms (solid 
line). At high density, n = 5 x 107cm-3, the weakly bound electrons appear in an earlier peak 
(dotted line). Also shown is the applied electric field, (b) Fraction of electrons from field ionized 
Rydberg atoms (circles) and from weakly bound (plasma-like) states (triangles) as a function of 
initial density of Rydberg atoms. 
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bound electrons develops and the contribution of electrons from atoms is reduced. 
As the initial density of Rydberg atoms increases the fraction of electrons from 
field-ionized Rydberg atoms decreases, while the fraction of electrons in the early 
"plasma"-peak increases. This behaviour appears clearly in Fig. 4b. The onset 
of the transition is predicted to scale as the sixth power of the Rydberg principal 
quantum number and we are currently exploring this experimentally. The transition 
from the bound (Rydberg) states to an unbound plasma-like state is suggestive of 
insulator-conductor transitions, that are often referred to as Mott-transitions [17]. 
The cold and dense gas of Rydberg atoms is well suited for studying the insulator- 
conductor phase transition, since, unlike in solid state physics, we have control over 
parameters such as the temperature and density of the system. 

CONCLUSION 

We have created a new, ultracold, neutral plasma by photoionizing laser cooled 
atoms. The initial temperature of the ions T, ~ 10 /xK is essentially equal to that 
of the atoms, whereas the electron temperature depends on the laser frequency and 
can vary between Te — 0.1 - 1000 K. The densities of the ultracold plasma can be 
as high as n = 2 x 109 cm-3. The plasma is not confined and has a lifetime of about 
100/is. This new system opens the way to a variety of studies, such as three-body 
recombination rates for temperatures less than 1 K and phase transitions between 
bound and unbound states. The technique is applicable to any atom that can be 
laser cooled. 
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Collective Modes in Strongly Coupled Dusty 
Plasmas 1 

M. S. Murillo 
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Abstract. Dusty plasmas offer a new setting for exploring dynamical phenomena 
in the strong coupling regime. In contrast to nonneutral plasmas, screening occurs 
in the dusty plasma and the effective interaction is approximately of a Yukawa form; 
this leads to acoustic-like modes rather than Langmuir-like modes. Dust acoustic 
waves thus have a dispersion relation that exists for very low and very high frequencies 
and wavevectors. Here the interpolation ansatz method is used to construct a strong 
coupling theory that is valid over this range. In this method the correct hydrodynamic 
limit is recovered and the lowest-order sum rules are satisfied. 

I    INTRODUCTION 

Laboratory dusty plasmas are multicomponent plasmas that contain large (~^m) 
grains that may have masses M as high as 1012 proton masses and have various 
shapes, compositions, and charges. In recent years such dusty plasmas are routinely 
created in the laboratory under controlled and increasingly well characterized con- 
ditions. The most common laboratory approach is to introduce spherical glass or 
plastic grains into a radio-frequency discharge plasma in which the electrode sheath 
acts as the trapping field. The grains are charged negatively, due to the higher elec- 
tron mobility, and may have net charges as high as Q~—106 elementary charges. 
The neutral background acts to cool the grains to temperatures of order T~0.5eV\ 
Together, these two conditions of high charge and cool temperatures leads to large 
values of the Coulomb coupling parameter, 

Q2 

where a — (3/47rn)1/3 is half the mean intergrain spacing. 

*)  This research was supported by the Los Alamos National Laboratory Directed Research and 
Development (LDRD) program. 
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The electron-ion plasma that forms a background to the dust grains is polarized 
by the charged grains and the effective grain-grain interaction is therefore a screened 
interaction, here taken to be of the Yukawa form 

v{r) = ^e-'/\ (2) 
r 

This is only a model for a real dusty plasma in a trap with electric fields. In reality 
the sheath electric field acts to cause the ions to stream through the trapping 
region, among other effects. As such, it is not clear what the best choice for the 
screening length Aj, is - here we will take it to be arbitrary and simply refer to the 
background screening length, or equivalently, the background screening wavevector 
qb = 1/A&. The screening causes the wave dispersion to be acoustic-like (w~cq), 
rather than Langmuir-like (w~Wp), just as it is for the ion-acoustic wave. The 
dust acoustic wave (DAW) thus provides a setting for exploring dynamical strong 
coupling phenomena from very low frequencies and wavevectors to much higher 
frequencies and wavevectors. 

There are many theoretical approaches to the description of D AW's in the strong 
coupling regime. A hydrodynamic approach has been employed by Wang and 
Bhattacharjee [1] and the usual DAW dispersion relation is recovered with viscous 
damping. The hydrodynamic approach has been extended to higher frequencies by 
Kaw and Sen [2] with a viscoelastic generalization. Microscopic theories, such as the 
quasilocalized charge (QLC) method, have been used by Rosenberg and Kaiman [3] 
and Murillo [4] has given a kinetic theory treatment. Each of these approaches has 
strengths in certain regions of the (q,w) plane, although none applies for the entire 
range. Specifically, the hydrodynamic description applies only for small frequencies 
and wavevectors, the viscoelastic theory does not describe nonlocal compressibility 
effects, the QLC is intrinsically a high-frequency theory, and the kinetic approach 
is intrinsically a low-frequency theory. Here an attempt is made to approximately 
cover the (q, a») plane by constructing a response function that satisfies sum rules 
at both low and high frequencies. 

II    INTERPOLATION ANSATZ METHOD 

Perhaps the most important guiding principle for constructing theoretical models 
of strongly coupled systems is the use of frequency moment sum rules. These 
rules can be thought of as conservation laws on the frequency content of response 
functions, and have found use in neutral liquid physics and degenerate electron 
gases. For example, in the theory of liquids, simple models coupled with exact sum 
rules have been shown, in some cases, to be superior to more complicated models. 
[5] Interestingly, for electron liquids it has been shown that satisfying frequency 
moment sum rules can lead to better static properties. [6] Here the interpolation 
ansatz method [7] (IAM) is used to construct a strong coupling theory for describing 
collective modes in dusty plasmas. 
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The collective modes can be found from the poles of the response function x(q, w), 
defined by 

%w) = x(q,«)^(q1«). (3) 

This equation relates density fluctuations <Sn(q, w) to the strength of an external 
potential energy source [/e(q,w); clearly, the poles of x(q,w) correspond to finite 
density fluctuations for vanishingly small external perturbations. This equation 
is defined in terms of the wavevector q and the frequency w. The simplest start- 
ing point for calculating the response function is the ideal gas response function 
x'0)(q, w), again defined by 

<^q,W)«X(°>(q,a;)[/e(q,u;). (4) 

This can be improved by adding to the external potential a term that represents 
the interaction due to the other particles. That is, we can assume the dust grains 
are free particles that respond to an effective external potential of the form 

£4(q,w) -» Ue((i,u)) + v(q)8n(ci,u). (5) 

In terms of the definition (3), this gives a response function of the form 

*n(q,«) = X(°)(q'j        Ue(q,v) 
l-v(q)x^>(ci,w) 

= Xm/(q,w)C/e(q,o;). (6) 

This approximation is referred to as the "random phase approximation" or the 
"mean field approximation" (MFA) and, already with this approximation, we ob- 
tain collective modes of the form 

w2 o2 

- = 3^> (7) «5    g' + tf' 

where the leading term in the large w expansion of X^°'(q, w) has been used. This 
is, of course, the usual (weak coupling) dispersion equation for DAW's. 

Rather than using a relation such as (5), we can also view the MFA in terms of 
an excess inverse response, as in 

= ~v{q), (8) 
Xm/(q,w)    x(0)(q»w) 

where the interaction plays the role of the excess inverse response function. By 
analogy with (8), and because we already have the MFA solution (7) in hand, we 
may define the exact excess inverse response by 

1 

x(q,<")      Xm/(q,w) = -*(q,«), (9) 
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^^=l-*(qlW)Xm/(q,W)- (10) 

Note that, in general, the excess response corresponds to a dynamical (wavevec- 
tor and frequency dependent) interaction. Since the starting point (8) already 
leads to the the well known DAW dispersion (7) (with, e.g., Landau damping 
taken into account); all information beyond the MFA is contained within \P(q,w). 
The response $(q,w) is related to the dynamic local field correction G(q,bj) by 
*(q,u,) = -i;(g)G(q,u,).[8] 

The problem is now to determine 9(q,w) in some manner. In the IAM a func- 
tional form for \P(q, w) is postulated that satisfies certain contraints. Typically 
these constraints are frequency moment sum rules that the full response function 
x(q,w) is known to satisfy exactly. For acoustic-like waves we require that both 
the low and high frequency limits of \P(q,w) are accurately treated and, hopefully, 
the transition region between the two limits is not too large. These asymptotic 
limits of %(q, w) can be obtain through the Kramers-Kronig relation 

M    X"(q,") 

which yields 

x(q>w = / ; ^r> (11) 

Hmv(q,W)=^W
2V(^)) (12) 

m=0 

and 

(üT
1
)+«>-») + ■■■ (13) 

oo    /w2m+lV 

Jlmx(q,-) = -EW (14) 
m=0    "^ 

(W)       (c3) 
(15) 

The frequency moments are defined by 

r°° (L) 
(«-) = r —wV'(q,«), (16) 

./-oo    7T 

and are purely structural (q-dependent) quantities.   The equivalent ideal gas ex- 
pansions that are needed are 

limx(0)(q,a,) = ~... (17) 
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As a first example, consider the static limit %(q, w) —> xfai 0)- From the classical 
fluctuation-dissipation theorem, 

we have immediately 

IT 
S(q,w) = X"(q>W) (18) 

-<<0 = ^(q). (19) 

Here S(q, w) and 5(q) are the dynamic and static structure factors, respectively. 
Thus, by accurately calculating S'(q), we exactly satisfy the (w-1) sum rule provided 
we choose 

*(q,o)=   T 

nv(q) [S(q) 
(20) 

Similarly, the high-frequency sum rules (u) and (u3) can be obtained easily, and 
these are the most useful for constraining $(q, u>) - the other sum rules require 
knowledge of correlation functions beyond the pair correlation function. Some- 
times the so-called static local field correction approximation is assumed such that 
*(q,w) « *(q,0) for all w. [4] 

At high frequencies we can combine (9), (11), and (17) to obtain 

/   \      n92 
— (w) =   

.   ,.       3nq4T      n2q\, . ,    , 

Again, provided we accurately compute the sum rule (w3) and we choose a form 
for *(q,w) that has the high-frequency limit (21), we will satisfy the sum rules (u>) 
and (w3). Explicitly, we have 

*(9,oo)= ^/d3r5(r)(l-cos(gx))^l. (22) 

Given the exact forms for *(<?, 0) and \P(q, oo), a suitable form that interpolates 
between the limits is needed. One such form is 

*(q,u,) = *(<7,0) + J^!^(*(g,oo) - *(g,0)), (23) 

where r is some (unknown) characteristic timescale that separates low and high 
frequencies and ß is to be determined. Since the response function expansions are 
all in terms of even powers of w, we assume ß is even. It is important to note 
that the sum rules used so far only provide constraints on the real part of $(q, u), 
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which, may be, in general, a complex quantity that describes collisional damping. 
The imaginary part can be obtained by ensuring that collective modes based on 
\P(q,w) match the modes of the Navier-Stokes equation in the hydrodynamic limit. 
In that limit it has been shown that the damping results from the replacement [9] 

-5->—  —+ *goJiL7-i  • (24) 

Here rj is the shear viscosity, ( is the bulk viscosity, and 77* = na2Mud is a charac- 
teristic viscosity. Matching the collective modes of (10) to this form, it is revealed 
that 

*"(q,u,H-^l^^ (25) 

Damping of this sort is often generalized to higher frequencies with the replacement 
[2,9] 

^ + <-^, (26) 
6 1 — lU)Tve 

where rve is the viscoelastic relaxation time that separates slow, viscous timescales 
from fast, elastic timescales. Clearly, at very high frequencies (above a collision 
frequency) and at large wavevectors (short length scales) we expect free particle 
rather than elastic behavior; thus, we assume that r(q) tends to zero for large 
wavevectors. Note that (26) makes (25) a complex quantity with a real part that 
scales like w2/(l + w27"2J, which suggests choosing ß = 2 and r = rve such that 
the ansatz (23) is consistent with the viscoelastic Navier-Stokes equation. Unfor- 
tunately, (26) does not suggest a method for extending into the finite wavevector 
regime. This can be partially accomplished by writing 

**{**) = T^Q (27) 
and using the analytic property of \P(q,w) [8] 

*(q,0)-*(q,oo)=7>r^^) (28) 
J-aa    7T W 

to yield 

*(q,«) = *     2   (*(q, 0) + o;2r2
e$(q, 00) - io;r„e[*(q, 0) - *(q, 00)]) .   (29) 

1 ~\- W  Tve 

With this ansatz we have determined the dynamical response of a strongly coupled 
dusty plasma over the entire frequency range and have included collisional damping. 
The functional form for r(q) and the values of the viscosity for a Yukawa system 
are not known but may be obtained, in principle, by enforcing higher-order sum 
rules, but this requires unknown three-body correlation functions. Alternatively, 
it may be possible to determine r(q) by enforcing self-consistency between S'(q) 
and S(q,w). The viscosity may be obtained by a separate calculation based on, for 
example, molecular dynamics simulation. 
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Ill    DISCUSSION 

The IAM has been applied to strongly coupled dusty plasmas, which have been 
modeled as a Yukawa system. A response function *(q,w) has been given that 
satisfies the (w_1), (w), and (w3) sum rules and smoothly interpolates between low 
and high frequencies. The functional form for *(q,o>) is chosen to also match the 
response of the viscoelastic Navier-Stokes equation, which identifies the viscoelas- 
tic relaxation time as the characteristic scale separating low and high frequency 
regimes. This analysis has indicated the possibility of measuring the viscosity of a 
strongly coupled Yukawa system with DAW's. 
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Abstract. The interaction forces between dust particles trapped in the space charge 
sheath of a plasma discharge is measured quantitatively. Dust particles in the same 
horizontal plane interact by means of a repulsive screened Coulomb interaction. Dust 
particles, however, at different vertical positions interact by net attractive forces, that 
are non-reciprocal as a consequence of the non-equilibrium sheath environment. 

INTRODUCTION 

Dusty plasmas are ideally suited as a model system for the study of stron- 
gly coupled systems. In typical experiments [1-4], monodisperse micron sized 
dust particles are trapped in the space charge sheath of plasma discharges, where 
strong inhomogeneous electric fields E(z) levitate the particles against gravity, i.e 
ZeE(z0) = mg, where m is the dust mass and g the gravitational acceleration. 
Since the monodisperse particles have the same mass they are trapped in a single 
horizontal plane at the height z0 in the sheath. The particles are charged by the 
continuous inflow of plasma electrons and ions to high (negative) charges of the 
order of Z = 104 elementary charges. 

Due to this enormous charge the Coulomb coupling parameter Y = 
Z2e2/(4TTC0bkT) (with b denoting the interparticle distance and T the dust tem- 
perature) is much larger than unity even at room temperature, thus giving rise to 
the formation of Coulomb liquids or solids. The time scales and particle sizes in 
these dusty plasmas allow a direct observation of the particles' motion with CCD 
cameras. 

From observations in dust crystal arrangements with more than one layer a num- 
ber of peculiar observations have been made. The particles of different layers are 
typically found to be vertically aligned rather than close-packed [1,5]. Furthermore, 
these systems show self-excited horizontal oscillations about their vertical aligned 
lattice sites at reduced gas pressure in the discharge which finally leads to a drama- 
tic increase in dust temperature and a subsequent phase transition into a Coulomb 
liquid or gas [6,7]. 
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Although a reasonable understanding of the properties of these dust systems 
in view of, e.g., the crystal structure [1,8], solid-liquid phase transitions [6,7], and 
wave propagation [9,10] has been achieved, the fundamental question of the particle- 
particle interaction in plasma crystals is still in need for experimental verification. 

The difficulty involved with these systems is the non-neutral plasma environment 
with strong electric fields. Theoretical investigations attributed the vertically ali- 
gned structure to the ion streaming motion around the dust particles due to the 
prevailing electric field in the sheath and an attractive wake potential downstream 
the particles is formed by polarization of the plasma environment [11,12]. From 
a more complete analysis of the non-equilibrium sheath environment and of the 
dust-ion Coulomb collisions by means of Monte-Carlo simulations and analytical 
models [5,13] the ions are found to be deflected into a region downstream the dust 
particles. The ion cloud around the dust particle therefore forms a long tail down- 
stream the dust particles. The interaction between this ion cloud and other dust 
particles is demonstrated to be not only attractive but also asymmetric or non- 
reciprocal in such a way that the upper particle can only mediate an attractive 
force on the particles downstream of the ion cloud [5,13]. The lower particle is not 
able to polarize the ion stream to yield a net attractive force on the upper particle. 
It is the attraction, that is responsible for the vertical aligned structure, and the 
asymmetry of the attraction is the reason for an instability leading to the observed 
oscillations and the phase transition of the plasma crystal [14]. 

Here, quantitative measurements on the dust particle interaction will be presen- 
ted. 

EXPERIMENTAL RESULTS AND DISCUSSION 

The experiments are performed in a parallel plate rf discharge in helium (see Fig. 
1). The lower electrode is powered at 13.56 MHz with discharge powers of the order 
of 10 W. The upper electrode as well as the entire discharge vessel is grounded. 
The dust particles are dropped into the discharge from a small container located 
above the upper electrode. In the experiments presented here, monodisperse plastic 
spheres of different radii a are used. 

The dust particles are trapped in the sheath above the lower electrode at a 
position where the force balance of electric field force and gravity is established. 
The particles are illuminated by a fan of laser light (not shown in the figure) and 
the scattered light is viewed from top and from the side by CCD cameras. 

The interaction between the dust particles in the horizontal plane is derived 
from the dispersion of longitudinal waves in the strongly coupled dust system. To 
simplify the experimental situation and the theoretical analysis, the dispersion in a 
linear (ID) particle arrangement is studied. The linear ordering is achieved by an 
elongated rectangular barrier on the electrode which confines the particles laterally 
(see Fig. 1 a). 10 particles of 9.47 /im diameter are trapped in a chain. The wave is 
excited by periodically modulating the beam of a laser diode (40 mW at 690 nm) 
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FIGURE 1. Scheme of the experimental setup for (a) waves in a linear chain and (b) vertical 

interactions. 

that is focused onto the first particle in the chain. The radiation pressure of the laser 
sets the particle into motion, thus driving a longitudinal wave. For each particle 

its time averaged position a;rj
n) and its oscillatory motion x^> is determined. From 

the phase shift between the particles the wavelength and from the spatial decrease 
of the amplitude the damping length is derived. These values correspond to the 
real (qr) and imaginary part (<?;) of the wave vector q — qr + iqi of the propagating 
wave x^ oc exp(iqx — icot). Since the wave is driven w has to be taken as real and 

q as complex. 
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FIGURE 2. Dispersion relation of the linear chain. 

The dispersion relation of an electrostatically coupled linear chain is [15,10] 

w2 + i. *,-4 ££*>■(£' fan  — 
Ancob3 exp(-rc«;)(2 + 2UK + nV)       (1) 

where ß describes the friction of the particles with the neutral gas. K = 6/AD is the 
screening strength (A^ denotes the Debye length).   Here, the particle interaction 
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is assumed to be of Debye-Hiickel type. From the experiment, the complex wave 
vector as a function of excitation frequency is measured. The interparticle distance 
b = 600 /im is easily measured from the video images and ß is known from the gas 
pressure (10 Pa). The obtained dispersion can be compared to the theoretical one 
in order to derive the crucial parameters Z and n. 

Figure 2 shows the measured dispersion relation along with the best fit of the 
theoretical dispersion (1). One can see that the real part of q increases linearly 
with frequency (acoustic dispersion), whereas g, stays almost constant up to 2 Hz 
and shows an increase at higher frequencies. From the best fit the dust charge is 
determined as Z = 9000 which is in good agreement with the value Z = 11000 
obtained from the standard resonance technique [3,16] under the same conditions. 
The screening strength is measured as n = 0.9, which was also found under different 
conditions [10]. This value of the Debye length can be attributed to the shielding by 
the suprathermal ion flow in the sheath. Summarizing, the interaction between dust 
particles in the horizontal plane can be understood as a repulsive screened Coulomb 
interaction, where the screening length is close to the interparticle distance. 

12 3 4 
time (s) 

23456789 
time (s) 

FIGURE 3. Behavior of the two particles at 61 Pa when (a) the upper and (b) the lower particle 

is pushed by the laser. The upper particle is pushed with 30% and the lower particle is pushed 

with 50% of the maximum laser force, respectively. 

As mentioned above, the interaction for vertically separated particles is expec- 
ted to be net attractive and asymmetric. In analytical models, the ion cloud is 
replaced by a positive point charge Q+ located at a distance d+ below the dust 
particle. The attraction of that cloud then acts on downstream particles, only. 
This non-reciprocity is an effect of reducing the many-body behavior and the di- 
rected motion of the ions to an effective dust-dust interaction. Nevertheless, this 
effective interaction mimics the real situation very accurately. 

In order to measure the attractive force directly a system of only two single 
dust particles of different radii is immersed in the sheath (2a! = 3.47 /mi, mj = 
3.31 ■ 10~14 kg, Zi = 2200 and 2a2 = 4.81 /mi, m2 = 8.82 • 10~14 kg, Z2 = 5860). 
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These two particles are then trapped at different heights in the sheath, but are free 
to move in the horizontal plane. They are pushed individually by a focused laser 
beam (see Fig. 1 b) and from the reaction of one particle to the motion of the other 
the attractive force is measured [17]. 

The motion of the two particles in the horizontal plane can be written as 

..    ,        0 ■ Q1Q2 , N 

m2x2 + m2ß2x2 

AiTCod3 (2) 

X2),    e=7T 
Q+l_ 
Q1S3 47re0oP 

Here, d — 1110 ^m denotes the vertical distance between upper and lower particle. 
Coulomb repulsion is considered for the upper particle, whereas the lower particle 
experiences the repulsive force from the upper and the attraction from the ion cloud. 
The attractive force is measured in units of the repulsive force by the parameter e. 

dust particle 
K) 

ion cloud \~j"7    j 

fatt 
dust particle 

100 150 
Ax (fim) 

250 

FIGURE 4. (a) Scheme of the forces acting on the lower particle. The ion density distribution 

is replaced by a single positive point charge attracting the lower particle, only, (b) Measured 

attractive force as a function of displacement of the lower particle. The horizontal dashed line 

indicates the force necessary to separate upper and lower particle. 

When the upper particle is hit by the focused laser beam (Fig. 3 a), both particles 
move as a pair. They stay vertically aligned during that motion, their horizontal 
position being identical. This observation gives immediate evidence that the lower 
particle feels an attractive force mediated from the upper particle. The force exerted 
by the laser is determined from the force balance with neutral drag rriißiii when 
the upper particle is moved by the laser. The laser force is determined as Fiaser = 
(17 ± 1) ■ 1(T15 N at full intensity. 

When the lower particle is pushed it leaves its aligned position, and the upper 
particle does not follow the lower one. At a lower laser force (0.5Fiaser) the lower 
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particle is shifted by only 200 //m. At, higher laser forces the lower particle is 
completely separated from the upper one, but the upper does not follow the lower 
one. This definitely shows that the upper particle does not experience any attractive 
forces from the lower particle. Therefore, it is proven, that the interaction between 
upper and lower is indeed attractive and non-reciprocal, where only the lower one 
experiences a net attractive force by the upper one, but not vice versa. 

When the lower particle is shifted by the laser, the net attractive force and the 
laser force balance each other, i.e. Fiaser = (e — l)QiQ2/(47re0d

3). Thus a variation 
of the laser force allows to directly probe the attractive well for the lower particle. 
The result of this measurement is shown in Fig. 4, where the horizontal deviation as 
a function of laser force is shown. From the gradient Fiascr/Ax = —4.63 • 10~n N/m 
the attractive force parameter is measured as e = 22.1. 

In summary, in the horizontal plane the dust particles interact by means of a 
repulsive screened Coulomb potential with a screening length that is close to the 
interparticle distance. For particles located at different heights in the sheath, the 
interaction is much more complex. The upper particle only reacts to a repulsive 
force from the lower one, whereas the lower one experiences a much stronger at- 
traction due to the ion cloud. This strong attraction leads to the observed vertical 
alignment. 

We like to thank Irina and Vitaly Schwcigert for helpful discussions. 
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Abstract. Dusty plasmas can be regarded as assemblies of Yukawa particles in a one- 
dimensional potential well. We extend the analyses on dusty plasmas in two directions: 
the two-dimensional Yukawa system and Yukawa mixtures. (1) Under appropriate 
conditions at low temperatures, dust particles sit in a plane which is perpendicular to 
the gravitational field. When they are also confined laterally by an electrode, we have 
a finite two-dimensional system of Yukawa particles. The low temperature structures 
are obtained by molecular dynamics simulations and the results are reproduced by 
theoretical analyses. Through these analyses we show that the correlation energy of 
the Yukawa system plays an essential role in structure formations. As for dynamics of 
this system, a crossover from the surface freezing of Coulomb system to surface melting 
of systems of short-ranged interactions is observed. (2) In the case of mixtures, we have 
an extra parameter characterizing the difference in the gravity on each species. We 
obtain the low temperature structures of this system and compare them with theoretical 
predictions based on the results for the case of one component. 

INTRODUCTION 

Physics of dusty plasmas, assemblies of macroscopic charged particles immersed 
in plasmas, is closely related both to important practical problems and to subjects 
of basic statistical physics. One of most exciting observations may be the formation 
of structures such as crystals and their transitions. We simplify the system as far as 
possible and try to find essential factors in the structure formation and transitions 
through numerical simulations and theoretical analyses. 

We assume that our dusty plasma is formed above a wide horizontal plane elec- 
trode and dust particles are levitated by the electric field against the vertical grav- 
itational field in the direction of -z. We adopt the ion matrix sheath model and 
further assume that the density of charges in the sheath (except for those of dust 
particles) ensh is constant, e being the elementary charge. 

For a dust particle of mass m and charge -q, the total potential is given by 
mgz + 2irqenshz

2 in the domain z < 0, z = 0 being the boundary between the 
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plasma bulk and the sheath. Dust particles are thus in the potential well [1]: 

<f>ext{z < 0) = mgz + 2ixqenshz
2 = (pext{z0) + 2nqensh(z - zQ)

2, (1) 

where z0 — — (g/A-n:ensh)(m/q)    < 0.   In the domain z > 0, we have only the 
gravitation <j>ext(z > 0) = mgz. 

Regarding the interaction between dust particles as the isotropic repulsive 
Yukawa potential (q2/r)exp(-r/X), —q being the (negative) charge on a dust par- 
ticle, we have obtained a phase diagram at low temperatures for the number of 
layers of dusty plasmas confined by a one-dimensional potential vext(z) = (l/2)kz2 

such as (1), where k = 4irqensh) by molecular dynamics simulations. We have also 
theoretically shown that the correlation energy in the lattice plane is of essential 
importance in realizing such a phase diagram [2-7]. 

TWO-DIMENSIONAL YUKAWA SYSTEM 

When we have strong enough confinement or weak enough repulsion between 
particles, only one layer is formed in the confined Yukawa system. We now consider 
the case where these dust particle in a plane are also confined laterally by an 
electrode surrounding dust particles. We denote the coordinates as r = (R, z), R 
being the xy components. The electrostatic potential of the surrounding electrode 
in the plane may be approximately expressed in the parabolic form 

{1/2)KR2. (2) 

We thus have a finite two-dimensional Yukawa system in a parabolic potential. At 
low temperatures, this system is characterized by a single dimensionless parameter 

a = q2/KX3 (3) 

in addition to the trivial one, the system size or the number of particles N. 

Molecular Dynamics Simulation 

We have performed molecular dynamics simulations at constant temperatures. 
Some results for the structures at low temperatures are shown in Fig. 1. For 
small systems, the global minimum is the ring structure for N < 5 and the star-like 
structure for N > 6, irrespective of the value of a. With the increase of the number 
of particles, these structures gradually change into triangular lattice in the central 
part and surrounding circular structures. 

When we have relatively large number of particles, the distribution is described 
by the average surface number density p(R) plotted in Fig. 2. The number of local 
minima rapidly increases with the system size and it becomes almost impossible 
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to find the global minimum. We may expect, however, the function p(R) is not 
sensitive to whether our system is in one of local minima or in the global minimum. 

In the case of unscreened Coulomb interaction, two-dimensional clusters have 
been simulated [8,9]. Structures of dust clusters have recently been observed ex- 
perimetally [10,11]. 

Theoretical Analyses 

When the Yukawa particles are distributed uniformly on a plane z = 0 with the 
surface density p0, the interaction energy per unit area is calculated as irq2\pl. 
Neglecting the edge effect and adopting the local approximation, we may estimate 
the interaction energy of our finite Yukawa system Umt as 

Uint = j dRnq2\p{R)2. (4) 

Assuming that p{R) = 0 for R > Rm, we find p(R) and Rm which minimize the 
value of Uint + Uext where Uext = J dR{l/2)KR2p(R). The results are 

wo-sb«-*». {¥="""■        (5) 

When compared with results of simulations, this result underestimates the surface 
density, as shown in Fig. 2. 

In the above calculation, the correlation (cohesive) energy between particles has 
been neglected. Since the correlation energy is negative, particles can be distributed 
more compactly when the correlation energy is taken into account. The correlation 
energy (per unit area) of the two-dimensional Yukawa lattice of the surface density 
pa is expressed by a function eco/l(l/ApJ/2) as q2pl/2ecoh{l/\pl/2) [6]. This expression 
provides us with approximate values of the cohesive energy of two-dimensional 
Yukawa system at low temperatures. When we take the cohesive energy between 
particles into account within the local approximation, we have finally the results 
also plotted in Fig. 2: 

X2p(R) = const ■ 
4na\2 (Rl - R2)) 

1/21 2 

(6) 

We observe that theoretical results for the density and the maximum radius are 
greatly improved and the results of simulations are almost reproduced when a > 1. 

Melting in Two-Dimensional Finite Yukawa System 

As one of most interesting dynamic behavior, we have observed the melting 
of the laterally confined two-dimensional Yukawa system by molecular dynamics 
simulations. Some results are shown in Fig. 3. 
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When the parameter a is large, the system melts from the surface as naturally 
expected from the fact that the bonding between surrounding particles are weak on 
the periphery. When a » 1, the system resembles that of short-ranged interaction 
and our result is consistent with that for, for example, the Lennard-Jones system. 

When a is extremely small, it seems that the situation changes and the system 
melts from the center. Since the interaction between particles may be approxi- 
mately considered to be Coulombic in this case, our result may be consistent with 
the known result of surface freezing for the finite Coulomb system [12]. The melting 
is sensitive to the existence of lattice defects and more extensive simulations may 
be necessary to establish this tendency of surface freezing for small values of a. 

STRUCTURES OF CONFINED YUKAWA MIXTURES 

When we have only one species of dust particles, the structure at low temper- 
atures is completely determined by the relative strength of screening f and the 
relative strength of confinement 77 [5]. In the case where there are two or more 
species of dusts, we have to also take the dependence of z0 on species into account. 
We define a parameter «5 by [1] 

6 = -zo/a = (g/4irensha)(m/q) (7) 

to represent the separation in z-direction. 

According to the values of 77 and 5, we have four cases. When 77 > 1 and 
5 < 1, the Yukawa mixture forms a two-dimensional system or the two-dimensional 
Yukawa mixture, when 77 > 1 and 5 > 1, separate two-dimensional Yukawa sys- 
tems, each being composed of one species, when 77 < 1 and 5 <C 1, a mixture of 
Yukawa particles with finite thickness, and when 77 < 1 and 6 > 1, two separate 
one-component Yukawa systems with finite thickness. 

We have performed molecular dynamics simulations on dust mixtures with two 
components [1]. The parameters correspond to the case where both kinds of dust 
particles are of the same material and the ratio of radii is 2. We observe that 
when 77's for both species are sufficiently large, they are in the one-layer state and 
with the decrease of the parameters 77's, multiple layers are formed. The critical 
values of transitions have been compared with those for the one-component case 
and satisfactory consistency has been shown when appropriate interpretations are 
made. It is also noted that the low-lying heavier species can provide a support for 
the lighter species afloat in the domain of bulk plasma. This indicates that we may 
have dusty plasmas of light particles in the plasma bulk by intentionally adding 
heavy dust particles. In the bulk plasma, the ion flow is small and we may have a 
nearly ideal Yukawa system. 
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CONCLUDING REMARKS 

We have extended our analyses on the simple model of dusty plasmas and ob- 
served the behavior of finite two-dimensional Yukawa systems and dusty plasma 
mixtures for a wide domain of characteristic parameters. These results can be 
compared with those in real experiments where those parameters are controlled. 
The critical parameters for transitions may be useful in determining the plasma 
parameters surrounding dust particles. The control of these structures may also 
applicable to structure formations related to plasma processing. 

This work has been partly supported by the Grants-in-Aid for Scientific Research 
(B)08458109 and (B)11480110 from the Ministry of Education, Science, Sports, and 
Culture of Japan. 
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Abstract. A new method of toroidal non-neutral plasma trap has been developed with 
applying the chaos-induced radial transport of particles near a magnetic null point. A 
pure electron plasma is produced by injecting an electron beam. The poloidal gyro- 
radius of an electron at the energy of 1 keV is of order 10 mm, which determines the 
length scale of the chaotic region. Amongst various applications of toroidal non-neutral 
plasmas, a possibility of producing very high-/? plasma, which is suitable for advanced 
fusion, has been examined. The self-electric field of a non-neutral plasma can generate 
a strong shear flow. When the flow velocity is comparable to the Alfven speed (which 
is smaller than the ion sound speed, if ß > 1), a high-/? equilibrium can be produced in 
which the plasma pressure is primarily balanced by the dynamic pressure of the flow. 
This configuration is described by a generalized Bernoulli law. 

I    INTRODUCTION 

Toroidal magnetic confinement of non-neutral plasmas will open a new regime of 
plasma physics; (1) the toroidal geometry enables us to confine a plasma without a 
longitudinal plugging electric field, and hence, multi-species with different charges 
can be trapped simultaneously, (2) a large internal electric field induces a strong flow 
(possibly sheared) in the plasma, adding various new phenomena which degenerate 
in neutral (or quasi-neutral) plasmas. Because of the conservation of the angular 
momentum, however, injection of charged particles across closed magnetic surfaces 
is not straightforward. It is required to develop an effective method to break the 
invariance of the angular momentum before particles come back to their source 
placed outside the confinement region.   A connotation of such a process is the 
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Btcoil 

Bvcoil 

FIGURE 1. Proto-RT device: a toroidal non-neutral plasma confinement experiment. A dipole 

magnetic field is produced by an internal ring conductor. A toroidal magnetic field yields a shear 

of magnetic field lines. 

collision-less particle transport across magnetic surfaces, which is one of the central 
problem of plasma physics. 

To explore a new scheme of toroidal non-neutral plasma confinement and its rich 
physical properties, we have constructed a proto-type device "proto-RT" (Fig. 1) 
which can generate a variety of magnetic field configurations in combination of a 
poloidal field, a vertical field, and a toroidal field (Fig. 2). The dipole poloidal 
magnetic field is generated by an internal ring conductor (5 kA DC). A pair of 
external coils provides a vertical field to generate a separatrix. Through the axis 
of the cylindrical chamber, we can apply a longitudinal current (30 kA DC). The 
toroidal magnetic field yields a magnetic shear. 

This system applies the chaos of electron orbits in a neighborhood of magnetic 
null points on a separatrix [1,2], which allows us to introduce a nonadiabatic effect 
that breaks the invariance of the angular momentum (Sec. II) resulting in collision- 
less diffusion of particles toward the confinement region. The collisionless diffusion 
induced by the chaos is associated with collisionless heating that is a diffusion pro- 
cess in the velocity space. Radio-frequency (RF) electron heating experiment has 
demonstrated effective collisionless power absorption (Sec. III). This effect can be 
applied for an advanced industrial plasma source [3-5]. 

In Sec. IV, we discuss a fusion application of a non-neutral plasma [6].   The 
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FIGURE 2. Two types of magnetic surfaces; (a) Separatrix generates an X-point on the outside 
of the internal conductor, (b) Magnetic null points are located on the center axis. 

self-electric field of a non-neutral plasma can generate a strong shear flow. When 
the flow velocity is comparable to the Alfven speed (which is smaller than the 
ion sound speed, if ß > 1), a high-/? equilibrium can be produced in which the 
plasma pressure is primarily balanced by the dynamic pressure of the flow. This 
configuration is described by a system of Beltrami-Bernoulli laws [7]. The set of 
solutions contains field configurations which are qualitatively different from usual 
neutral plasma equilibria (which are naturally included in the set). The larger new 
set may help us to understand a variety of structures generated in plasmas. It also 
opens up the possibility of experimenting with altogether different configurations, 
and some of which may lead to a novel regime of high-/? plasma confinement. 

II    CONFINEMENT OF NON-NEUTRAL TOROIDAL 
PLASMA 

Due to the conservation of the canonical angular momentum, charged particles 
cannot diffuse across closed magnetic surfaces of a toroidally symmetric magnetic 
field. When the adiabatic invariance of the magnetic moment holds, the guiding 
center orbit in an axisymmetric system is integrable, and hence, particles trace pe- 
riodic orbits, resulting in short excursions from the source of the particles. Charged 
particles, however, can have long orbit lengths in an appropriately designed mag- 
netic field [1]. The key is to create a null point in the magnetic field, which destroys 
the adiabatic constants of motion. Then, resultant increase in the degree of freedom 
brings about chaos of particle motion, and the particle travels a very long distance 
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FIGURE 3. Radial distribution of the electrostatic potential in a pure electron plasma. 

before it comes back to the particle source. This effect is applied to achieve high 
efficiency of charged particle trapping. 

A pure electron plasma is produced by injecting an electron beam. The poloidal 
magnetic field is of order 10-2 T, and the corresponding poloidal gyro-radius of an 
electron at the energy of 1 keV is of order 10 mm, which determines the length 
scale of the chaotic region of electrons. An electron gun is placed near the magnetic 
null point. The calculated average connection length of chaotic orbits is of order 
102 ~ 103 m. Once the electron is decelerated in the confinement region, possibly 
by collisions with neutral particles, it will be trapped by the closed magnetic field. 

We demonstrated steady-state confinement of a pure electron plasma. The max- 
imum electrostatic potential, achieved by injecting electrons with energy of 2 keV, 
was about 600 V. The corresponding E X B-drift velocity is of order 106 m/s. 
Figure 3 shows the radial distribution of the electrostatic potential. A steep gra- 
dient of the potential appears near the separatrix {z = 65 mm), implying that the 
separatrix determines the confinement region. Inside the separatrix, the potential 
has an almost parabolic distribution. The electron density is of order 1013 m~3. 

By varying the probe potential, we measured the energy distribution of confined 
electrons. The bulk component has a temperature of ~ 60 eV. In some narrow 
regions insider the separatrix, the probe detects beam orbits, where the potential 
makes peaks and the energy distribution takes strongly irregular profiles. 
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III COLLISIONLESS HEATING AND DIFFUSION 
INDUCED BY CHAOS 

The mixing effect of the chaos in a magnetic null region produces efficient col- 
lisionless heating of electrons, as well as the collisionless diffusion discussed in the 
preceding section. With applying a radio-frequency (RF) electric field, we obtain a 
large resistivity that represents the macroscopic entropy production. This "chaos- 
induced resistance" enables plasma production at a low gas pressure suitable for 
advanced industrial applications [3]. 

The collisionless motion of charged particles in an inhomogeneous magnetic field 
(length scale L) and an RF electric field (angular frequency u) becomes most 
nonlinear when the normalized electric field, defined by [2] 

£ = ^g-    {Bc = mw/e), 

is order unity (m: electron mass, e: electron charge), and the resultant chaos 
of orbits yields a positive Lyapunov exponent of order 0.1 (implying that orbits 
decorrelate after about 10 cycles of the RF electric field). The "effective collision 
frequency" due to the chaos-induced randomization is of the order of the Lyapunov 
exponent [2]. The combination of the chaos effect due to the inhomogeneous mag- 
netic field and an inelastic collision effect yields an enhanced resistance. Inelastic 
collisions open a sink of energy (entropy) in the high-energy region of the velocity 
space. This non-equilibrium system is characterized by the cascade process driven 
by the mixing effect. The energy dissipation is determined by the speed of the 
cascade, which is scaled by the Lyapunov exponent, and the energy removal rate 
in the sink region. The theory predicts that the effective resistance is larger than 
the classical collisional resistance by factor of 10 ~ 102 [2]. 

In the experiment, we launch an RF electric field (13.56 MHz) by a toroidal loop 
antenna. The electric field strength is of order 1 kV/m. These parameters are 
optimized to maximize the Lyapunov exponent of particle orbits in the magnetic 
null region. Figure III shows a photograph of the plasma light localized in the 
separatrix region. When we apply the same RF electric field without the magnetic 
field, we do not observe plasma production. 

The RF modulation method also applies to yield collisionless diffusion of elec- 
trons. As a result of the chaotic modulation of the angular momentum, the electrons 
can move across magnetic surfaces. Numerical simulations show that the spatial 
inhomogeneity of RF electric field enhances the diffusion of particles [8]. 

IV HIGH-/? EQUILIBRIUM WITH PLASMA FLOW 

Departure from the quasi-neutral condition allows us to apply significant two- 
fluid effects that impart a new freedom to designs of high-performance fusion plas- 
mas. The self-electric field in a non-neutralized plasma induces a strong E x B-drift 

401 



FIGURE 4. RF production of a plasma using the chaos-induced collisionless power absorption. 
The plasma is produced in the magnetic null region and diffuses along the separatrix. 

flow.   A fast flow produces a large hydrodynamic pressure that can balance with 
the thermal pressure of the plasma. 

A proper two-fluid treatment of the mutual interaction between the velocity and 
the magnetic fields leads to the delineation of qualitatively new phenomena in 
magnetofluids. In order to trace the origin of the coupling between the velocity 
and the magnetic fields, let us re-examine the standard formulation. Neglecting 
the small electron inertia, the electron equation of motion (under the Lorentz force 
and the electron pressure — Vpc) is 

E + VexB + —VPe = 0, 
en (1) 

where Ve is the electron flow velocity and n is the density (assumed to be constant). 
Denoting the ion velocity by V, the ion equation of motion reads 

|V + (V.V)V = -l(£ + VKB)-ivP„ (2) 

where M is the ion mass. We normalize the length by the ion skin depth (c/u>pi), 
time by the ion gyration time (l/wci), the magnetic field by its representative value 
(Bo), the velocity by the Alfven speed (VA = B0/\/(ioMn), and the pressures by 
the magnetic pressure (Bfi/fio)- Using E = —dA/dt — V<^ and j — ^V x B, we 
can rewrite (l)-(2) as 

d
7A = (V-V xB)xB-V (-<!> +Pc), (3) 

dt 
d_ 

at 
(V + A) = V x(B + VxV)-V (y2/2 + pi + <t>). (4) 
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Taking the curl of (3) and (4), we can cast them in the standard form of vortex- 
dynamics equation: 

^-Vx^xfi^O    t/ = l,2) (5) 

in terms of a pair of generalized vorticities and the corresponding flows 

/ fix = B, / fi; 
\ U1 = V - V x B,       \U 

2 = B + VxV, 
2 = V. 

The simplest stationary solution to (5) is given by the "Beltrami conditions" 

U^ßjSlj    (j = l,2), (6) 

implying the alignment of the vorticities with the corresponding flows [7]. Writing 
a = 1/Hi and 6 = 1/A*2> and assuming that a and b are constants, the Beltrami 
conditions (6) translate to the simultaneous linear equations 

B = a(V-VxB), (7) 
B + V x V = bV, (8) 

which have a simple and significant connotation; the electron flow (Ve = V — V X 
B) parallels the magnetic field B, while the ion flow V" follows the "generalized 
magnetic field" (B + V x V) which contains the Coriolis' force induced by the ion 
inertia effect on a circulating flow. 

As a direct consequence of the Beltrami conditions (7)-(8) and equilibrium con- 
ditions for (l)-(2), we obtain a set of generalized "Bernoulli conditions" 

V2/2 + pi + 4> = constant, (9) 

pe — <f> = constant. (10) 

We note that the constancy of the energy density (the sum of the potential and the 
kinetic energy) implied in (9)-(10) refers to the directions perpendicular, as well as 
parallel, to the streamlines of V and Ve. This is an essential difference from the 
conventional Bernoulli condition. 

It might appear that the Beltrami-Bernoulli states are very special and may 
be generally inaccessible. These conditions, however, follow from the concept of 
relaxed states. Indeed, the Bernoulli conditions describe homogeneous distributions 
of the energy density. 

Adding (9) and (10) yields 

:U + Iy2= constant, (11) 
it & 

where ß is the standard beta ratio. When the magnetic field and the flow have 
comparable magnitudes (in the Alfven normalized units), the equilibrium can have 
a large beta value. One possible method to generate such a large flow is to introduce 
an appreciable charge non-neutrality which drives the E x B drift spin. 
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V    SUMMARY AND DISCUSSION 

We have demonstrated the production of a toroidal non-neutral plasma and its 
stability in a sheared magnetic field. The experiment has been conducted on a 
proto-type device that uses insulated rods to support the internal conductor. The 
density (~ 1013 m~3) and the total charge (~ 10-8 Coulomb) of the trapped par- 
ticles are in the same order of those obtained in standard open-field systems. The 
confinement time, however, is not evaluated yet, because of difficulty in applying 
diagnostics. 

The device can be used as a charged particle trap to confine positrons, anti- 
protons and so on. The chaos-induced collisionless electron heating can be applied 
to produce plasmas at low gas pressure (< 10~2 Pa) for the use in ultra-fine etching 
of semiconductors [3]. Moreover, this effect may play an important role in high- 
temperature plasmas such as solar corona and neutral sheet. At magnetic null 
points, magnetic field lines can reconnect if there is a finite resistivity (magnetic 
diffusivity). In many different examples, the classical collisional resistivity is too 
small to account for the observed reconnection rates. The chaos-induced resistivity 
is one candidate to explain the anomalous resistivity. 

After exploring characteristics of the non-neutral toroidal plasma, we will up- 
grade the device employing a levitated internal conductor, and will start experi- 
ments on high-/? plasmas. The principle of this confinement method is described 
by the generalized Bernoulli law. The plasma is primarily confined by the hy- 
drodynamic pressure due to a strong shear flow which is produced by the radial 
self-electric field. Therefore, this scheme can be regarded as a new type of electric- 
field confinement. 
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Abstract. Recently, an internal-ring device named Proto-RT (Prototype Ring Trap) 
was constructed at University of Tokyo, and experiments on the device have been 
intensively conducted. The main goal of Proto-RT is to explore an innovative method to 
attain a plasma equilibrium with extremely high-/3 (ß > 1) in a toroidal geometry using 
non-neutral condition. At the first series of the experiments, pure electron plasmas 
(ne ~ 1013 m~3) have been successfully confined inside a separatrix. No disruption is 
so far observed. The confinement time of the electron plasmas is of order 0.1 ms for an 
X point configuration. The non-neutrality of An, ~ 1013 m~3 is already beyond the 
critical value which is required to produce an enough self-electric field E in non-neutral 
plasmas with n0 ~ 1019 m~3, causing a strong E x B flow thoroughly over the plasmas 
where the hydrodynamic pressure of the flow is predicted to balance with the thermal 
pressure of the plasmas. 

I. INTRODUCTION AND SUMMARY 

A possibility of high-/? equilibrium with strong flow has been theoretically pointed 
out [1], which is based on a double-curl Beltrami field. In fact, in our laboratory 
several high-/? solutions have been numerically found out in both cylindrical and 
toroidal geometries. The requirement to this high-/? equilibrium is to maintain two- 
fluid effects with the large velocity field whose magnitude should be comparable to 

TABLE 1. Nominal plasma parameters required to 

the high-/3 equilibrium for no ~ 1019 m-3. 

Ane (m~3)     central/?    Ex B flow at plasma edge 

l.4vA 

3xlOn 0.5 
4xlOn 1.0 
lxlO12 3.5 
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that of the magnetic field in plasmas. Another significant feature of this equilibrium 
is that the thermal pressure of plasmas is sustained by the hydrodynamic pressure 
of the strong flow, alleviating the strength of magnetic fields to confine the plas- 
mas which offers attractive benefits including the lowest construction costs among 
toroidal fusion systems. Some central ß values expected from the double-curl Bel- 
trami condition are listed in Table 1 for cylindrical plasmas having the density n0 

of ~ 1019 m~3. To obtain such a fast flow in plasmas, a nonneutral condition is 
proposed [2] which can actually produce a self-electric field E in plasmas, causing 
strong ExB shear flow if we apply an appropriate magnetic field B there. Then, 
the question is asked on how the nonneutral plasmas can be produced in laboratory 
experiments. Although several methods can be considered, we have proposed to in- 
ject quasi-neutral plasmas to pure electron plasmas. In order to explore this way, we 
have constructed an internal-ring device named Proto-RT (Prototype Ring Trap). 
The magnetic field B of Proto-RT is completely static so that experiments on the 
device can be performed in well-controlled laboratory settings. Moreover, the de- 
vice has a great flexibility to produce various B configurations such as closed-field 
configurations with or without magnetic null (X point). Those properties allow us 
to investigate fundamental physics of (1) anomalous resistivity in magnetic null [3], 
(2) toroidal trapping of antimatters, as well as (3) magnetically confined plasmas. 

Regarding to (3), the experiments to confine pure electron plasmas have been 
performed, and the electron density ne of ~ 1013 m-3 is attained inside the sep- 
aratrix for the X point configuration that is shown in the companion paper (Fig. 
2(a)) [4]. The electrons having the directed energy of 2 keV are launched from an 
electron gun which is placed by 4.5 cm inside the separatrix. In the experiments, 
no disruption of pure electron plasmas is observed. Both stronger poloidal fields 
Bp and a shear effect of magnetic fields result in higher ne inside the separatrix, 
while only few electrons can be confined by purely toroidal magnetic fields Bt- Such 
a shear effect can be recognized from Fig. 4 in Ref. [2] on which —$ inside the 
separatrix is about 50 V without Bt and, as Bt is applied, significantly increases 
up to ~ 500 V (Bt ~ 25 G). This result might be attributed to the suppression 
of microturbulence by the magnetic shear. Actually, a preliminary measurement 
of electrostatic fluctuations provided the frequency in range of 106 — 107 Hz with 
the magnitude of 10~3 of the ambient potential, and the value of $/$ seemed to 
decrease as Bt was applied up to 25 G. As for the particle confinement time TN of 
the electron plasmas, the value for the X point configuration is inferred to be the 
order of 0.1 ms which is evaluated from the decay signal of whole currents flowing 
into the chamber wall, while 1 ms for a Spherator like configuration (described also 
in Fig. 2 in Ref. [4]) where two X points are on the center stack of Proto-RT. 

As already shown in Table 1, the non-neutrality of Ane ~ 1013 m~3 is already 
enough to attain extremely high-/? (> 1) at the central part of the plasmas. Thus, 
a project to inject high-pressure quasi-neutral plasmas to the pure electron plasmas 
is now being planned to explore the expected high-/? plasmas with flow. 

In this paper, a description of the Proto-RT device and the diagnostics employed 
are explained in Sec. II. In Sec. Ill, the first data of pure electron plasmas, focusing 
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on the values of both ne and ExB flow, for an X point configuration are briefly 
explained and discussed. Other detail aspects of this experiment are shown in the 
following companion paper [5]. 

II. THE PROTO-RT DEVICE 

Proto-RT, portraited in Fig. 1 of Ref. [4], was constructed in 1998 to investigate 
the fundamental physics of (1) non-neutral plasmas, (2) magnetic null, and (3) 
trapping of positrons or antiprotons in purely magnetic fields. The primary ob- 
jective on Proto-RT is the study of toroidal confinement of pure electron plasmas 
inside a separatrix. The machine parameters are summarized in Table 2. 

A 1.18 m inner diameter and 0.90 m long vacuum vessel, which is made of 1.0 
cm thick stainless steel (SUS304), contains an internal-ring (30.0 cm major radius 
and 4.3 cm minor radius) and a center stack with 11.4 cm outside diameter. The 
internal-ring, 6 mm thick stainless steel, has one toroidal and four poloidal cuts 
which present to help smooth flux surfaces around the ring. Inside the ring, there 
is a 175 turn copper wire with 3.2 mm diameter to produce dipole fields (DF), and 
each of which is stiffen together with an epoxy. Two copper veneers are inserted into 
the coil as fins. Also, Freon is applied to cool the coil down. The Freon circulates in 
toroidal direction of the coil through a quarter-inch stainless tube that is attached 
to the fins. Furthermore, He2 gas is filled up inside the ring to promote the heat 
conduction there. Both the tube and the gas are introduced in the internal-ring 
through the same bus-bar. In fact, there are two bus-bars on the internal-ring. The 
another one is used to energize the coil. To hold the ring with the bus-bars, a set 
of eight stainless steel rods having 3 mm diameter is used to connect the ring with 
the center stack. A ceramic tube covers each rod. 

The inner diameter of the center stack, 4.0 mm thick stainless steel, is 10.6 cm 
through which a set of six toroidal-field (TF) coils passes in order to carry poloidal 
currents, being linked with the vacuum vessel. Each TF coil has ten-turn which 
is made of copper boards (1 mm thick each), and is cooled down by water. A 
vertical-field (VF) is added to produce a magnetic separatrix. Proto-RT uses three 
DC power supplies, (1) TF: 50 V, 500 A, (2) DF: 60 V, 60 A, (3) VF: 60 V, 30 A 
x 2, to form a well-controlled static B. By properly programming these currents, 
we can flexibly create various B configurations as shown in Fig. 1. The vacuum 
vessel is pumped down to (3 — 4) x 10-7 Torr for the present experimental research. 
In Proto-RT, radio frequency of 13.56 MHz (up to 1 kW) is available to launch an 
electromagnetic wave to the plasmas through a toroidal loop antenna having 1.0 
m diameter. An electron gun is installed at z = 0 to inject electrons which can be 
accelerated up to 2.0 kV. The head of the gun is movable in not only the radial 
direction but also the tangent plane perpendicular to the r — z plane. 

Regarding to diagnostics of Proto-RT, two potential probes are now used to 
measure electrical potentials —$ of pure electron plasmas from which the value of 
electron density ne can be calculated.   An array of probes having semiconductor 
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TABLE 2. Principal parameters of Proto-RT. 

Vacuum vessel (SUS304) 

Internal ring (SUS304) 

A pair of vertical coil 

Six toroidal coils 

Center Stack (SUS304) 

Inner diameter 
Height 
Thickness 
Major radius 
Minor radius 
Thickness 
Coil wire 
Wire diameter 
DC power supply 
Magnetic field strength 
Cooling method 
Diameter 
Coil wire 
Wire diameter 
DC power supply 
Magnetic field strength 
Cooling method 
Wide 
Height 
Coil board 
Board thickness 
DC power supply 
Magnetic field strength 
Cooling method 
Diameter 

1.18 m 
0.90 m 
1.0 cm 
30 cm 
4.3 cm 
6 mm 

175 turn (copper) 
3.2 mm 

60 V, 60 A 
10 - 100 G 

Freon with Hc2 
180 cm 

175 turn in each (copper) 
3.2 mm 

60 V, 30 Ax2 
45 G 
Air 

111 cm 
232 cm 

10 turn in each (copper) 
1 mm 

50V, 500 A 
120 G 
Water 

11.4 cm 

tips and electrodes are installed to determine static B and E simultaneously. A 
conventional Faraday cup is used to provide electron energy Ec. Also, a directional 
Faraday cup is now being designed to measure precise electron flow flux neyj inside 
the separatrix. 

III. FIRST RESULTS AND DISCUSSION 

Since the TF coils were completed, we have performed the first series of experi- 
ments to confine pure electrons inside the separatrix. In this experiment, electrons 
are injected by 4.5 cm inside the X point. Data in Fig. 1 is a typical radial profile 
of electrostatic potential $(r) measured at the midplane (z = 0). The value of —$ 
is about 500 V at r — 0.43 m, and decreases rapidly to 0 V at both r = 0.36 m 
and 0.54 m. These edges may be determined by the magnetic well produced by Bp 

having diffusive region around the X point, although not proved rigourosly. One 
notes that several peaks can be recognized on the profile. Those are caused by 
beam components of injected electrons circulating inside the separatrix. In fact, 
they strongly hit the surface of the probe with faster directed velocity, resulting in 
larger particle flux on the probe. 
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FIGURE 1. Radial profile of electrostatic potential $ measured by a potential probe. Electron 

density ne, being calculated from the dashed curve which fits to $, is also described. 

Assuming there is no positive charges inside the separatrix, the value of ne can 
be numerically calculated from Poisson's equation: A$ = -ene/e0. The dashed 
curve, shown also in Fig. 1, is the radial density profile ne(r) for the same shot. 
Here, it should be noted that a polynomial function was used to fit the raw data 
and then differentiated twice to obtain ne(r) in order to avoid any numerical errors 
due to the spiky profile. As can be seen from the obtained profile, the value of 
ne is the order of 1013 m~3, being already beyond the critical value to produce 
strong ExB flow (as already described in Table 1). In fact, as can be seen in 
Fig. 2, the toroidal (shear) flow vt in Proto-RT is evaluated to be up to 9 x 106 

m/s. Here, the values of B measued by three dimensional Hall probes are provided 
by another vacuum shot. Thus, if this non-neutrality is achieved in a nonneutral 
plasma (n0 ~ 1019 m-3) with excess electrons (Ane ~ 1013 m-3), such flow would 
be even faster, because B should be excluded away more from the plasma internal 
region by the ion diamagnetism, resulting in faster ExB flow. 

Finally, since Proto-RT is not a linear machine but a torus device, the question 
should be asked on the confinement properties of the toroidal electron plasmas. We 
have tried several methods to measure TN of pure electron plasmas trapped inside 
the separatrix. However, no reliable data is so far obtained. As one of the methods, 
electron particle flux flowing into the chamber wall was directly measured, since 
once the electrons escaped from the separatrix, they were expected to rapidly draw 
into the chamber wall along magnetic field lines. The decay time of the flux was 
the order of 100 /xs, however, this was still insufficient to conclude TN < 1 ms. This 
is because the signal of the flux seemed to reflect only the beam components of 
electrons   circulating inside the separatrix.    Since  the plasma volume is about 
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FIGURE 2. Toroidal flow velocity vt expected in Proto-RT when An, 
value of vA for n0 ~ 1019 m~3 is about 105 m/s in Proto-RT. 

~ 10~2 m3, the total charge Q confined inside the separatrix is estimated to be 10~8 

C. Suppose that Q flows out even in such a short confinement time (~ 100/xs), 
the expected current on the wall would be the order of 0.1 in A too small to be 
distinguished from the beam current which is about 7 mA. Thus, an electron particle 
detector is now considered to directly measure the number of electrons inside the 
separatrix. 
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Abstract. The toroidal magnetic trap has an advantage in achieving long orbit 
lengths, which allows us to apply a slow process of energy reduction to the trapped 
particles. On Proto-RT (Prototype Ring Trap), we have demonstrated the confinement 
of a pure electron plasma without the help of external electric fields. We have injected 
electrons with the energy of 2 keV inside a separatrix. The electrostatic potential of 
the electron cloud is of order 100 V. The corresponding density of the electron plasma 
is calculated to be of order 1013 m~3. In order to modulate the kinetic energy of the 
electrons we are now planning RF assisted injection of electrons. 

I    INTRODUCTION 

There are many applications of toroidal confinement of nonneutral plasmas. In 
the toroidal geometry, no external electric field is required to trap charged particles. 
Also, the connection length, which is a length between the source and the sink of 
the particle, is essentially much longer than in linear devices. Those properties 
allow us to confine high energy charged particles, such as antiparticles, with a 
slower method to decrease the kinetic energy of the particles. On the other hand, 
in the linear device, the orbit lengths of the particles are so short that we must 
rapidly reduce the kinetic energy of the particles below the external electrostatic 
plug potentials at both ends of the device. 

The most critical difficulty in the toroidal trap is that the particles must propa- 
gate across the magnetic fields to be confined inside a separatrix. In order to cause 
such a cross-field inward diffusion, we have proposed to use the effective scattering 
at a magnetic null (B = 0) [1], on which adiabatic invariants are not conserved. 
The effects of the scattering in Proto-RT have been numerically studied [2,3], and 
in fact, the particles are trapped inside the separatrix; the connection length of 
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the particles significantly increases if the particles are injected so as to pass by the 
magnetic null. As an another application, the toroidal nonneutral plasma has been 
proposed as a high-/? plasma source [4,5], and the theoretical background of the 
concept is explained in the companion paper [6]. 

The aim of this paper is to show the advantage of the toroidal trap and to 
show the first experimental results of a pure electron plasma trapped in Proto-RT. 
The basic ideas of the toroidal trap and the numerical simulations for Proto-RT 
are described in Sec.II. In Sec.Ill, we show the first experimental results of pure 
electron plasmas on the device. Finally we discuss the results in Sec IV. 

II    APPLICATION OF CHAOS FOR PLASMA TRAP 

Connection lengths of charged particles can be significantly long when the source 
of the particles is placed just on the separatrix in the toroidal trap [3]. The im- 
portant point is to make a magnetic null, on which both the first and the second 
adiabatic invariants of the particles are not conserved. As a result, increase in 
the degree of freedom brings about chaos of particle motion, which enables a par- 
ticle to have a very long orbit before it comes back to the particle source. The 
chaos yields an effective collision-less diffusion of charged particles from the parti- 
cle source towards the confinement region. Once the particle is decelerated into the 
confinement region, it will be trapped by the closed magnetic field. Moreover, In a 
toroidal magnetic trap, due to the long orbit length, we can apply an RF electric 
field to impart non-adiabatic effects to the particles and induce a more enhanced 
collision-less diffusion of particles toward the confinement region (see Figure 1). In 
Fig. 1, we calculate the orbits of electrons, with energy of 1 keV, emitted from an 
electron gun that is placed outside the separatrix. Fig. 1 shows the projection, onto 
a poloidal cross section, of a typical orbit of an electron. Without the help of an RF 
electric field, particles escape along the open magnetic field outside the separatrix 
(Fig. 1(a)). If we apply a uniform toroidal RF electric field with amplitude of 100 
V/m, the electron enters into the confinement region and stay there for a long time 
(Fig. 1(b)). 

(a) Without RF electric field (b)  With RF electric field 
(100 V/m, Uniform) 

02   0.25   0.3   0.35   0.4   0.45   05   0.55   0. 02   025   0.3   0.35   0.4   0.45   0.5   055   0.6 

R(m) R(m) 

FIGURE 1. Calculated typical orbits (projection onto a poloidal cross section).  The injected 

electron can be trapped due to the non-adiabatic effect of RF electric field. 
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Ill    EXPERIMENTS ON PURE ELECTRON PLASMA 

We have conducted the experiments on the Proto-RT device shown in Fig. 2(a). 
The typical base pressure is about 5 x 10"7 Torr in the present experimental 
research. The principal parameters of Proto-RT are explained in detail in the com- 
panion paper [5]. On Proto-RT, several closed B configurations can be produced 
as described in Fig. 2 in [7], and we have examined the confinement properties 
on each B configuration. However, due to the page limit of this paper, we will 
show only the data on the X-point configuration. In the X-point configuration, we 
produce an X point outside the internal conductor as shown in Fig. 2(b). The 
typical strength of the magnetic field B is about 100 G inside the separatrix. The 
electron gun is placed on the midplane (z = 0) 4.5 cm inside the separatrix to 
inject electrons. The electrons can be accelerated up to 2.0 keV. The electrons are 
injected 45 degree against the midplane (and tangentially to the r-z plane) in this 
experiment. The beam current of the electron inside the separatrix is about 10 mA. 
We have measured the electrostatic potential $ profiles in both r and z directions 
in three different combinations of toroidal (B4) and poloidal (Bp) magnetic fields, 
that is, (1) purely Bt, (2) purely Bp, and (3) Bt + Bp. Data in Fig. 3(a) are typical 
radial profiles of <5(r) measured at the midplane. 

In the case of (1), as can be seen the profile in Fig. 3, the value of-$ is almost 
0 V, which indicates that electrons can not be confined by only Bt. This can be 
understood from the particle's orbit described in Fig. 4. In the case of (1), the 
injected electron moves upward along Z axis by V B drift. 

In the case of (2), the value of -$ is about 50 V at r ~ 40 cm, and gradually 
decreases to 0 V at r ~ 50 cm. Here one notes that the separatrix is at r = 51 cm in 
this configuration. Thus, the edge of -$ is probably determined by the separatrix. 
On the other hand, at r ~ 36 cm the inner edge can be seen in the profile. This 
may be determined by the fact that the particles cannot approach there due to 
stronger B near the internal conductor placed at r = 34 cm. 

In the case of (3), the value of -$ significantly increases up to -550 V at r = 43 
cm. And the value of -$ drops to 0 V at both r = 36 cm and 54 cm. This improved 
result should be due to magnetic shear effects which actually seem to suppress <E> / 
$ in the recent experiments [5]. 

Figure 3(b) shows $(z) at r = 46 cm. Clearly, distinct sharp edges of $(z) can 
be recognized at both z = 4 cm and z = -5 cm on the separatrix, while not so 
sharp in $(r) profiles shown already in Fig. 3(a). The reason of this difference is 
unknown. However, it might be attributed to the existence of the X-point at z — 0 
where particles are immediately diffused because of B = 0. In the case of (3), the 
inferred electron density is of order 1013 m~3. Finally, in both $(r) and $(z) for Bp 

+ Bt case several spikes can be recognized. This is caused by the beam component 
of electrons as already experimented in [5]. 
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FIGURE 2. (a) Schematic view of Proto-RT (b) X-point configuration 

Figure 4 shows the electron orbits on R-Z plane for the corresponding three cases 
of Fig 3. As already explained, in the case of (1), the electron causes V B drift 
along the z axis. 

In the case of (2), the injected electron goes into the separatrix, but then escapes 
through the X point after reflecting at a magnetic mirror at (r,z) = (27,-6). 

In the case of (3), the electron is almost completely trapped inside the separatrix. 
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FIGURE 3. Electrostatic potential profiles in r and z directions. 
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FIGURE 4. Calculated electron orbits. 

An electrostatic probe has been installed to measure electron temperature Te 

and electron density ne inside the separatrix. Figure 5 shows the I-V characteristic 
taken from the probe at (r,z) = (46,5). As can be seen the profile, no ion saturation 
current is measured, probably due to no ions. The value of Te is estimated to be 
62 eV, while 2 keV of the injected energy of the electrons. This suggests that 
the electrons are thermalized inside the separatrix by the expected non-adiabatic 
effects. 

When the value of retarding potential is 0 V, the value of the probe current 
is about 1 /xA. From the equation of current I = enevS/i, where e is a charge 
of the electron, ne is the density, and v is the speed of the electron and S is the 
cross section of the probe, the value of the particle flux nev is calculated to be 1020 

m"2^-1. If v is about 5 x 106 m/s (60 eV), then ne is about 2 x 1013 m-3, which 
is consistent with the $ measurements as already shown in Fig. 3. 

(a) 

8     12 
Retarding voltage (x10 V) Retarding voltage (x10 V) 

FIGURE 5.   I-V characteristic of electrostatic probe measured in pure electron plasma on 

Proto-RT at (r,z) (46,5) for X-point configuration. 
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IV    SUMMARY 

We have demonstrated the toroidal confinement of high energy electrons with 
initial energy of 2 keV by pure magnetic fields on Proto-RT. The electron plasma 
is essentially confined by Bp. B( can work only when Bp is applied to confine the 
electrons. The electrostatic potential of the electron plasma with Bp and B( is 
measured to be about 600 V for X-point configurations. The value of ne and Te 

of the plasma are of order 1013 m-3 and about 60 eV, respectively. We are now 
planning the RF assisted injection of electrons. 
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Abstract A toroidal device has been constructed and nonneutral plasma experiments have 
been intensively promoted, where an internal ring coil with a copper conductor has been 
employed. We are now designing a toroidal plasma trapping device with a levitated super- 
conducting internal coil, so as to avoid plasma loss through current-lead and support structures 
of the internal coil. Typical machine parameters are as follows; the major radius of the internal 
ring coil is 40 cm and the coil current is 500 kA. Concerning to the levitated coil, the high- 
temperature (high-Tc) super-conducting coil is preferable for plasma experiments, because long 
pulse and/or high power heating experiments might be available due to the good property for the 
thermal stability and large heat capacity of the high-Tc super-conducting coil. Our primary 
candidate is Bi-2223 super-conducting cable. Since the maximum magnetic field strength is 
around 2 T in our device, the deterioration of the critical current is not so severe up to 40 K. 
We are now promoting a detailed design of the toroidal device with a high-Tc super-conducting 
internal coil. 

Introduction 

Nonneutral plasma trapping with a toroidal device has many advantages in 
comparison with conventional linear device, and a toroidal device with an internal 
ring has been proposed. ' A proto type device (call Proto-RT) has been 
constructed and experiments of nonneutral plasma trapping has been carried out.2 

Electrons are injected into the toroidal device, and the buildup of the electric 
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potential up to a few hundreds volts has been observed.3 4 Since nonneutrality of 
plasma yields a radial electric field, strong toroidal rotation of nonneutral plasma is 
induced with the combination of the poloidal magnetic field. By introducing 
additional poloidal field with external poloidal coils and toroidal field, it is also 
possible to study trapping properties of nonneutral plasma for various 
configurations of magnetic surface. 

Since the internal ring of the Proto-RT device is made of normal copper coil, 
the device should be equipped with the coil current feeder and the coil support rod, 
which intersect with the magnetic surface. Therefore, the life time of nonneutral 
plasmas might be limited by the interaction with these concrete obstacles. If the 
internal ring would be super-conducting levitating coil, we are free from these 
problems. In addition, relatively strong magnetic field might be available with the 
super-conducting coil, since the coil current density could be increased. 

Here we have designed a toroidal device with a levitated super-conducting 
internal coil for the nonneutral plasma trapping experiments. From the 
viewpoints of plasma experiments and machine operation, high temperature (high- 
Tc) super-conducting coil seems to be very attractive. We have, therefore, paid 
much attention to the feasibility of the high-Tc super-conducting conductors as the 
levitated internal ring coil. 

We have mainly two purposes with this internal ring coil device; one is 
nonneutral plasma trapping, and another is ultra high beta plasma confinement. 
The latter purpose is dominantly devoting to fusion plasma study. S.M. Mahajan 
and Z. Yoshida have found a new relaxed state under the strong plasma flow, and 
claim that the confinement of the extremely high beta plasma might be possible.5 

This internal ring device is quite feasible to study this new relaxed state. 
Therefore, in designing the super-conducting coil device, we have taken high 
power plasma heating into account, as well. 

OUTLINE OF THE DEVICE 

Figure 1 shows a schematic view of the device, which is composed with 
levitated internal ring coil, several poloidal field coils and toroidal field coil. 
Various magnetic field configuration can be produced by the proper combinations 
of these coils. Some other coils such as feedback coil and charging coil system 
for the levitated coil are omitted in this picture. 

The basic specification of the levitated internal ring coil is as follows; the 
major radius of the coil is 40 cm, and the coil current is 500 kAT The minor 
radius of the coil might be around 10 cm. The maximum magnetic field strength 
is estimated to be ~ 2T around the conductor. It is expected that the internal ring 
coil is levitating during a few hours or more. We have to carry out feedback 
control of this levitated coil, because there exists an unstable mode even for any 
levitation scenario.    We should notice that there existed several levitated internal 
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coil devices in the 1970's for the fusion plasma study and position control within 
less than 0.1 mm has been achieved.6 

FIGURE 1.    Schematic view of a toroidal device with a levitated ring coil. 

The internal ring coil produces the dipole magnetic field. By combining 
external poloidal field coils, several magnetic field configuration is available; for 
example, the plasma trapping configuration bounded with the magnetic separatrix 
located at the outer (or top/bottom) region of the torus can be produced. The 
toroidal field coil is equipped so as to introduce the magnetic shear. Some 
instabilities of nonneutral plasmas such as diocotron instability might be stabilized 
by the magnetic shear. 
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FEASIBILITY STUDY OF HIGH TEMPERATURE 
SUPER-CONDUCTING COIL FOR A LEVITATED RING COIL 

There were, in the past, several experiences of construction and operation of 
levitated coils with a low temperature super-conducting cable,6 and a new large 
device is now under construction.7 If a high-Tc super-conducting cable could be 
employed as a levitated ring coil, it seems to be quite attractive from the viewpoints 
of plasma experiments and machine operation. Advantages of high-Tc super- 
conducting coils are summarized as follows; 

@ Large heat Capacity; i.e., specific heat capacity at 20-40 K is around 100 
times as high as that at 4 K. 

-^ High power and/or long pulse plasma heating experiments will be 
available. 

-> Thermal stability of super-conducting coils will be improved, and 
thermal quench might be avoidable. 

@ High Cooling Efficiency of refrigerators; i.e., the efficiency of refrigerators at 
20-40 K is around 10 times as high as that at 4 K.) 

-^ Easy maintenance and remarkable reduction of operation cost 

At present, a Bi-2223 Ag-sheathed multifilamentary wire seems to be a most 
promising candidate for high magnetic field coil. For example, a 7T solenoid coil 
with an averaged major radius of 17.6 cm and 1.5 MAT has already been 
constructed8 and a large coil with the outer diameter of 120 cm is now fabricated.9 

Bi-2223 is a thin tape (typically, 3.5mm X 0.24mm) and the critical current density 
strongly degradates as the magnetic field is increased at the relatively high 
temperature regime (e.g., T > 40 K). There exists a residual voltage of the high- 
Tc super-conducting coil, and n-value around the critical current density is 
relatively small. We should, therefore, pay attention to the coil current decay due 
to the residual voltage. 

Operation temperature regime is set to be between 20K to 40K or less. 
During levitating operation for a few hours the heat input energy to the levitated 
internal ring coil should be compensated with the temperature increase of the 
structural materials of the coil. So as to increase the heat capacity of the coil itself, 
some heat reservoir with the large heat capacity should be equipped; e.g., lead, 
cooled helium and cooled nitrogen. Here we have roughly estimated the 
feasibility of the cooled nitrogen as a heat reservoir. The specific heat capacity of 
the nitrogen is p = 19.87 J/K/mol at 20 K. If the cooled nitrogen with 2 kg weight 
is introduced and the temperature increase from 20 K to 40 K is tolerable, the total 
heat capacity energy becomes 41.2 kJ. This large heat capacity might make it 
possible to carry out high power and/or long pulse plasma heating experiments. 

Based on these considerations and fabrication experiences, a levitated coil 
has been designed with a high-Tc super-conducting cable.    Basic parameters are 
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listed in Table 1. 

TABLE 1.   Design Parameters of High Temperature Super-conducting Coil 

coil major radius: 

rectangular cross section : 

conductor with one tape 

conductor size : 

total turns : 

total conductor length: 

conductor current: 

operation temperature: 

stored energy of the coil: 

coil inductance : 

maximum magnetic field: 

tension stress: 

total resistance of coil: 

->    flow loss : 

->    current decay time : 

R = 40.0 cm 

axb= 10 cm x 10 cm 

0.3mm x3.5 mm 

250 x 25 = 6,250 turns 

d = 15.7 km 

lop = 80 A 

T=30K 

Wmag = 145 kJ 

L = 45.4 H 

Br,max = 1.68 T   Bz,max = 2.23 T 

a = 60 MPa 

RQ=2.8 ufl 

Qflow=17.9W 

x = 4.5 hours 

From these figures, we could conclude that the levitated internal ring coil might be 
designed with the high-Tc super-conducting cable. 
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SECTION 8 

SPECIAL TOPICS 



The Penning Fusion Experiment - Ions 

M.M. Schauer, K.R. Umstadter, and D.C. Barnes 

Los Alamos National Laboratory 

Abstract. The Penning fusion experiment (PFX) studies the feasibility of 
using a Penning trap as a fusion confinement device. Such use would 
require spatial and/or temporal compression of the plasma to overcome the 
Brillouin density limit imposed by the nonneutrality of Penning trap 
plasmas. In an earlier experiment, we achieved enhanced plasma density at 
the center of a pure, electron plasma confined in a hyperbolic, Penning trap 
by inducing spherically convergent flow in a nonthermal plasma( 1,2,3). The 
goal of this work is to induce similar flow in a positive ion plasma confined 
in the virtual cathode provided by a spherical, uniform density electron 
plasma. This approach promises the greatest flexibility in operating with 
multi-species plasmas (e.g. DVT1") or implementing temporal compression 
schemes such as the Periodically Oscillating Plasma Sphere of Nebel and 
Barnes(4,5). Here, we report on our work to produce and diagnose the 
necessary electron plasma. 

INTRODUCTION 

A series of experiments is under way at Los Alamos National Laboratory to 
investigate the usefulness of Penning traps as fusion confinement devices. Such 
devices are attractive due to their excellent confinement times, with storage of charged 
particles stretching easily to hours. Unfortunately, due to the nonneutral nature of the 
plasmas the densities attainable are severely limited, the limiting value being the 
Brillouin limit. This would seem to restrict the usefulness of these systems for fusion 
confinement. However, this limitation is a global one, and it is therefore possible to 
exceed it over some limited spatial region while the average density remains well 
below the Brillouin limit. The goal of these experiments is to demonstrate such 
plasma compression. 

Initial experiments concentrated on compression of a nonthermal, pure electron 
plasma in a traditional, hyperbolic Penning trap. Proper tuning of the trap electric and 
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magnetic fields assures that the periods of the radial and axial oscillations of the 
electrons are such that any orbit originating at the trap center will necessarily return to 
the trap center. A collection of zero or near-zero angular momentum electrons in such 
a trap will thus form a dense core plasma as their orbits converge on the trap center, 
thereby possibly exceeding the Brillouin limit. Note that unlike the fully thermalized 
case, where the space charge of the trapped plasma can at most cancel the vacuum 
fields, the center of a trap containing such a focused, electron plasma can actually be 
charged negatively thereby producing a virtual cathode. Such convergent flow and the 
resulting density focus were conclusively demonstrated by the Penning fusion 
experiment (PFX) which is described in detail elsewhere( 1,2,3). 

Note that a plasma of particles undergoing such convergent flow is spherical in 
shape. That this is so can be seen by observing that, in a reference frame rotating at 
one-half the cyclotron frequency, electrons see an effective well which is spherical and 
purely radial. In this picture, the focusing is due to reflection at the spherical wall, 
hence producing a spherical plasma. Alternatively, it follows from the restriction 
placed on the periods of the axial and radial motions that, for equal energies, the radius 
of the motion in the radial plane is half the axial amplitude. 

To be interesting as a fusion reactor, a storage device must have the flexibility to 
trap and compress multi-component plasmas, e.g. D+/T+, to high densities and must be 
able to do so at high energies. Use of convergent orbits produced by the vacuum 
trapping fields of a Penning trap is restricted to plasmas consisting of a single charge- 
to-mass ratio, since the frequencies of the radial and axial orbits depend differently on 
q/m. This precludes simultaneous focusing of charged species such as D+ and T+. The 
end result is that the Brillouin-limited density of the unfocused species will limit the 
reactivity. 

However, it is possible to trap positively charged ions in the virtual cathode 
produced by converging electrons. The sphericity of the electron plasma assures that 
any trapped ions will be focused to the center of the virtual cathode regardless of q/m 
thus allowing for high ion density in a multi-species plasma. Alternatively, one could 
attempt to produce a spherically symmetric, uniform density electron plasma. This 
charge distribution would provide a harmonic well for ions allowing one to 
parametrically drive the ions by modulating the electron density. This system has 
been investigated theoretically by Barnes and Nebel(4,5), and the requirements on the 
electron distribution function are discussed later in this article. Demonstrating 
trapping of positive ions in a virtual cathode produced by an electron plasma is the 
goal of the present experiment, the Penning fusion experiment - ions or PFX-I. The 
remainder of the paper deals with this experiment 

EXPERIMENTAL APPARATUS 

As mentioned in the introduction, it is necessary to trap ions at high density and 
energy. This requires that, in addition to being spherical to a high order to produce the 
desired convergence, the electron space-charge field producing the virtual cathode be 
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as large as possible. Any injected ions will then be accelerated to high energy at the 
trap center by the large gradients produced by the virtual cathode. In order to produce 
this large space-charge field, the trap confining the electrons must therefore be 
operated at high voltage (-100 kV). 

In order to increase the voltage standoff of our trap, we have modified the standard 
electron Penning trap geometry significantly. Chief among the modifications is the 
increased separation of the endcaps and the anode as well as the non-hyperbolic shape 
of the surfaces of these electrodes. A schematic diagram of the trap is shown in figure 
1, and the trap is described in detail below. 

The electron beam in PFX-I is produced by a hairpin, Tungsten filament located 
inside a stainless steel electrode, which serves as both the upper endcap of the trap and 
a suppressor electrode for the electron gun. The electrode is mounted to one of three 
pins on a high voltage feedthrough, the other two pins being used to deliver heater 
current to the filament. All three pins are nominally at the trap high voltage, V0, 
although the filament leads are held at some small positive voltage, Vb~lV, with 
respect to the upper endcap. The apex of the filament is located roughly 3 mm behind 
the front surface of the upper endcap electrode and in the center of an approximately 4 
mm diameter hole. 

Emission from the filament is enabled by field penetration from the high voltage. 
Hence, there is some positive cutoff voltage with respect to the upper endcap, 
proportional to V0, above which emission into the trap ceases, and the beam can be 
turned on or off quickly (-10 u.s) by setting Vb below or above this cutoff voltage. In 
this configuration, the potential across the plane of the hole in the upper endcap has a 
minimum (in the absolute value sense) at R=0, i.e. the trap axis. Electrons reflected 
back by the lower endcap, as described below, are then able to escape axially only in 
some small cylindrical volume centered at R=0. 

UEC 

Anode 

Lower 
endcap 

DT 

Collector 

FIGURE 1. Schematic of the trap showing the upper endcap (UEC), the anode, lower 
endcap, drift tube (DT), and collector. A cutout in the UEC reveals the Tungsten 
emitter and beam exit hole. The drawing is not to scale. 
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Coll Scope 

Figure 2. Electrical schematic of the trap apparatus. 

For the initial tests described here, the anode consists of a stainless steel block 
roughly 18 mm thick with a 2 mm diameter hole through its center. The gap between 
the upper endcap and anode is 5.8 cm. The anode is maintained at ground potential, 
and electron current flowing to it can be monitored by means of an electrical lead 
exiting the vacuum system through a low voltage feedthrough. This enables us to 
monitor alignment of the trap axis with the magnetic field axis. Figure 2 contains an 
electrical schematic of the apparatus. 

Approximately 3 cm below the lower surface of the anode is a 60% transparent 
grid which serves as the lower endcap or reflector. This electrode is maintained at 
sufficient negative voltage to reflect the electron beam and maintain axial 
confinement, but can be switched to ground potential with a variable time delay 
relative to the positive voltage ramp that halts electron emission from the filament. 
Trapped electrons then escape to the collector, which is monitored by an oscilloscope. 
The resulting pulse on the collector is the sum of two distinct signals. A background 
pulse arising from capacitive coupling of the lower endcap discharge pulse is summed 
with the electron arrival signal 

Between the lower endcap and the collector is the drift tube. The drift tube is 
maintained at a fixed potential throughout the trap operation thereby decreasing the 
amplitude of the capacitive component of the collector signal. Nevertheless, before 
any electron data is taken a background pulse is attained by switching the lower 
endcap voltage with no electron beam in the trap. This background signal is 
subtracted from the full collector signal to retrieve the electron signal. Integration of 
the electron signal then gives the trap inventory. 

The entire trap is contained within an ultrahigh vacuum system with operating 
pressure of roughly 3xl0"6 Pa maintained by a 50 1/s ion pump. The vacuum system 
then inserts into the room temperature bore of a superconducting magnet capable of 
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producing fields up to 7 T, although for the experiments reported here the fields used 
were less than 2 T. 

The high voltage for the upper endcap and electron emitter is provided by a rack 
mounted 100 kV supply. This supply is used to float an instrument rack, which 
contains the filament current and bias supplies and various current monitoring devices, 
to high voltage. The rack is powered by an isolation transformer immersed in 
dielectric oil, and control of the instruments is via optical modems and fiber optic 
cable. 

The experiments reported here were limited to low voltage (< 3 kV) as it was 
necessary to switch the lower endcap between ground and trapping voltage by means 
of a relay with limited voltage standoff. Additionally, the voltage was supplied to the 
lower endcap by means of a vacuum feedthrough with maximum voltage rating of 5 
kV. In future experiments we envision grounding the lower endcap by means of a 
high resistance (10 GÜ.), high voltage resistor. The lower endcap will then charge to 
the same voltage as the upper endcap by means of the electron beam impinging on it. 

RESULTS AND DISCUSSION 

We have measured the trap inventory, N, as a function of trap voltage, V0, and 
have made initial measurements of inventory as a function of magnetic field. The 
inventory is measured immediately after the electron beam is switched off and is 
corrected for such systematic effects as the transmissivity of the lower endcap grid. In 
figure 3 one can see a linear dependence of the inventory on voltage. 

The trap lifetime was determined by measuring the trap inventory as a function of 

4.00E+008   - 

0.00E+000   - 

1000 1500 

Voltage 

FIGURE 3. Total trap inventory as a function of the trap voltage. The best fit to the 
data, shown by the solid line, is linear in trap voltage. 
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Figure 4. Trap lifetime for various trap voltages and magnetic fields. The solid 
symbols are all for V0 = 400v, and open symbols are V0 = 200v. Magnetic fields 
are as follows: triangles B=1.14T, squares B=0.76T, and circles B=0.38T. 

delay from the cessation of electron injection into the trap. Figure 4 shows the 
lifetime curves for different trap voltages and magnetic fields. We find a e"1 time of 
roughly 100 ms. The poor lifetime of the trap is undoubtedly due to misalignment of 
the trap and magnetic field axes and perhaps also to the unconventional trap geometry. 
Note that the data in figure 4 show a definite dependence of the trap inventory on 
magnetic field, but there is not sufficient data to conclusively determine the scaling. 
Also, it is not possible to determine the scaling of trap lifetime with magnetic field due 
to the paucity of data. 

In general, the electron inventory is determined by a balance between injection 
rate, i.e. current into the trap, and loss rate. Thus, N = Ij x I e, where I( is the injection 
current, x the confinement time, and e the elementary charge. There are two modes of 
electron confinement, depending on electron space charge potential compared to 
applied voltage. Suppose first that space charge is small. Then Ij is determined by the 
source parameters, and x is determined by trap confinement. In the opposite limit, 
when space charge potential approaches the applied voltage V0, the voltage at the 
filament is decreased by the space charge potential of the electrons in the trap thereby 
decreasing Ij. In this limit, N is determined by the electrostatic solution which gives 
space charge potential equal to V0, and Ij adjusts to e N / x. 

The scaling of electron inventory with magnetic field B, V0, and source parameters 
may be calculated in various operating regimes. The calculation is simplest in the 
space-charge dominated confinement regime. In this case, N <*= V0, and independent 
of X and, thus, B and source parameters. This rests on the assumption that the electron 
cloud will assume a density profile that has the same functional form (Gaussian, for 
example) across the entire radius of the trap regardless of B, so that the peak density, 
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and hence N, is proportional only to V0. In the low space-charge potential case, 
several scalings of both I; and x with the control parameters are possible. Ii may be 
emission limited, giving a scaling of N with heater current applied to the emitter. 
Alternatively, Ij may be limited by the space charge in the gap between the emitter and 
the UEC. In this case, Ii «= AVb3/2/d2, where AVb is the difference between the cutoff 
value (proportional to V0) and the bias voltage, Vb, applied to the emitter-UEC gap, 
and d is the effective gap distance. 

Similarly, T may be determined by axial loss (in case electrons are collected near 
the UEC) or by radial loss (to the anode). Axial electron loss may be characterized by 
the number of recirculations, Nr, of a typical electron injected from the UEC system. 
This number will generally be large, because the acceptance aperture of the UEC for 
trapped electrons is typically small compared to the radial dimensions of the electron 
cloud. Thus, only some fraction of electrons travelling upward within the trap will be 
able to enter the UEC and be collected (if fr is this fraction, Nr = l/fr). If axial losses 
dominate confinement, x <* N/V0

1/2, since the axial bounce time is inversely 
proportional to the electron velocity. The velocity itself scales as the square root of 
the energy, which is in turn proportional to V0. Radial losses are believed to be 
dominated by misalignment errors in PFX-I. Previous studies of such transport(6) 
have shown a scaling x °= (B/L)2 in long, low-density electron traps, where L is the 
length of the plasma. In the case of PFX-I, L is fixed, so X °= B2 would be expected. 
Table 1 summarizes the expected scalings. 

Based on the linearity of the trap inventory with voltage, it would seem that the 
trap is operating in the space-charge limited mode. In this case, according to the 
discussion above, we would expect to see no dependence of the inventory on the 
magnetic field, but as was pointed out previously, the data in figure 4 show a definite, 
if poorly characterized, dependence of N on B. This discrepancy is as yet not 
understood, but may be due to a deviation of the electron density profile from the 
universal one mentioned previously. 

TABLE 1. Summary of inventory scaling. 

Regime Inventory 

Trap filled to space- 
charge limit 

NocV0 

Trap below space-charge 
limit 

i^^^ÄÄs^^Bi^Älii Axial Loss Radial Loss 

Emission limited 
source Heater/V0

1/2 Heater*B2 

Space-charge limited 
source AVb

3/2/V0
1/2 

Noc 

AVb
3/2-*B2 
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FUTURE PLANS 

We are presently working on several modifications to the apparatus. We have 
completely redesigned the trap in order to provide better alignment of the trap 
electrodes, and we are working to improve the available diagnostics. We are also 
working to understand better the requirements on the electron distribution necessary to 
provide an axial ion well. In this section we discuss an optical diagnostic being 
installed on the trap and briefly summarize the electron distribution requirements. 

Diagnostics 

We are presently installing a nondestructive, optical diagnostic in addition to the 
existing destructive diagnostics. Hydrogen gas introduced into the trap volume will be 
dissociated, and the trapped electrons will excite the constituent atoms. In the 
presence of a significant electric field, a dipole potential term is added to the atomic 
Hamiltonian, resulting in a shift of the emission lines as described by the linear Stark 
effect. For Hydrogen atoms the shift is given by 

f 
AE =  n(n,-«2), (1) 

15620 

where F is the electric field strength in V/cm, n is the principal quantum number, and 
ni and TI2 are electric quantum numbers which result from separating the Schrodinger 
equation in parabolic coordinates(7). This leads to a splitting of the spectral lines that 
is linear with applied voltage, assuming the trap is filled to the space charge limit, and 
ranges from roughly 1 A for V0 = 10 kV to 10 A at 100 kV for the strongest K- 

components of the Ha lines. Measurement of this splitting then can be used as an 
electron density diagnostic. Note that the Brillouin density limit for electrons in a 1 T 
field is much larger (xlOO) than the 100 kV space-charge limited density. 

There are several effects that can produce a competing splitting or broadening, 
thereby masking the desired splitting. Chief among these is the Zeeman splitting due 
to the trap magnetic field, which ranges from 0.1 A to 0.2 Ä for fields ranging from 1 
T to 2 T (8). Doppler broadening of the line could mask the Stark splitting, but the 
Doppler width is expected to be no greater than 0.5 A for atom temperatures up to an 
equivalent energy of 1 eV and less than 0.1 Ä at room temperature. 

Electron Distribution Requirements 

In order to produce an ion well depth with a usable fraction of V0, it is necessary 
that electrons have a nonthermal distribution. To ascertain this, suppose the contrary 
holds. Then, there is some electron temperature Te, and electron density is determined 
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as n0 exp[e <J> / Te], where O is the effective potential for electron confinement. <E> 
consists of an applied electrostatic part Oes and a magnetic part <£>A- 3>A vanishes 
along the magnetic axis of the system, where the range of <E> is at most the applied VG. 
For effective electron confinement then it is necessary that e V0 » Te. On the other 
hand, if Vj is the ion well depth, the condition that electron density vary little over the 
ion well region requires that e V; « Te. Thus, thermal electrons imply that V0 »» 
Vj, and very little of the applied voltage is available for ion confinement and heating. 
To maximize Vj, electrons should be nearly monoenergetic (possibly in a rotating 
frame). Then, electron confinement is assured for V0 just equal to this electron energy 
and density variation over the ion well region is only of order Vj/V0. A nearly 
monoenergetic distribution may be produced by adjusting electron confinement time 
to be much shorter than electron energy scattering time, and simultaneously collecting 
electrons at nearly their constant (source) energy, as was demonstrated in PFX(l). 

In addition to a nearly monoenergetic energy distribution, an axial ion well will 
result only for a proper distribution of the electron canonical angular momentum about 
the trap symmetry axis, Pe. A theoretical study based on past and present work has 
identified three possible electron distributions: 

1. Brillouin flow (Pe = 0 for all electrons) in which a beam distribution is 
maintained so that a third invariant besides e, the single particle energy, and Pe exists. 
An applied electrostatic field is optional. This is the EBIT approach(9). 

2. Monoenergetic, rigid-rotor electrons [f ~ 8(£- QPe - £<>)] with magnetic shaping. 
Here Q is the plasma rotation frequency. No applied electrostatic field is required. 
This is the original PFX-I proposal(lO). 

3. Spherically convergent flow in a spherical, harmonic trap such that f ~ 8(e)/L , 
where L is the total angular momentum. Note that there is no Pe dependence. An 
applied electrostatic field is required(ll). 

PFX-I is currently focusing on 2 & 3 above, since the desired large electron 
recirculation makes maintaining a beam difficult. While most required features of 2 & 
3 have been demonstrated in PFX,(1) the exact electron source, sink, and additional 
control are yet to be determined experimentally. 

SUMMARY 

PFX-I has demonstrated trapping of electrons in a modified Penning trap 
geometry. The trap electrodes have been spark conditioned to 75 kV, and the electron 
source has been operated in a 1 T field at trap voltages up to 50 kV. The trap 
inventory and lifetime have been measured at lower voltages as a function of trap 
voltage and magnetic field. This data is still under study. Ongoing work is 
concentrated on improving the trap lifetime and diagnostics and on theoretical 
understanding of the required electron distribution necessary to produce an axial ion 
well. 
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Abstract. A novel method for containing a pure ion plasma at thermonuclear densities 
and temperatures has been modeled. The method combines the confinement principles 
of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap 
can confine a uniform-density plasma of about 5xl011cm-3 with a 30-Tesla magnetic 
field. However, if the axial field is ramped, a much higher local ion density can be 
obtained. Starting with a 107 cm-3 trapped deuterium plasma at the Brillouin limit 
(B = 0.6 Tesla), the field is ramped to 30 Tesla. Because the plasma is comprised of 
particles of only one sign of charge, transport losses are very low, i.e., the conductivity 
is high. As a result, the ramped field does not penetrate the plasma and a diamagnetic 
surface current is generated, with the ions being accelerated to relativistic velocities. 
To counteract the inward j x B forces from this induced current, additional ions are 
injected into the plasma along the axis to increase the density (and mutual electrostatic 
repulsion) of the target plasma. In the absence of the higher magnetic field in the 
center, the ions drift outward until a balance is established between the outward driving 
forces (centrifugal, electrostatic, pressure gradient) and the inward j x B force. An 
equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a plasma 
can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density 
exceeding 4 x 1014 cm-3. 

I    INTRODUCTION 

This paper presents a novel method for achieving a well-known goal: the confine- 
ment of non-neutral ion plasmas that are adequately dense for controlled thermonu- 
clear fusion applications. This approach is a subset of a wider class of experiments 
known as Inertial Electrostatic Confinement experiments [1], but the question ad- 
dressed here is quite specific: can the density of particles in a non-neutral plasma 
[2] be increased far beyond the density associated with the Brillouin limit? 

A common device used to confine a non-neutral plasma is the cylindrical 
Malmberg-Penning trap [3]. Conventional magnetic fusion devices contain quasi- 
neutral plasmas in a toroidal or linear geometry, but generally the confinement is far 
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worse than that predicted classically. Though at first glance non-neutral plasmas 
would not appear good candidates for long confinement time applications (because 
of the strong, outward electrostatic forces associated with the space-charge poten- 
tial), Malmberg-Penning traps have exhibited superb confinement capability. This 
is because the conservation of rotational angular momentum forces the mean square 
radius of a one-component plasma to remain constant in time. One-component 
plasmas also have two other benefits from a practical standpoint for fusion devices: 
the absence of both radiative losses and thermal wall loading because of the sharp 
radial fall-off in the density profile (typically on the order of several Debye lengths). 
This superior confinement capability has not been generally realized in controlled 
fusion devices, however, because conventional Malmberg-Penning traps can confine 
uniform-density plasmas of only about 5 x 10n cm-3, even with magnetic fields 
strengths in the tens of Tesla. This is expressed as the Brillouin limit, 

oj2                              B2 

2-f < 1   or   n<- -, (1) 

where wp is the plasma frequency, y/Aime2/m, and wc is the cyclotron frequency, 
eB/mc. At the Brillouin limit, the plasma column is rotating at U>R, which is equal 
to wc/2. Equation (1) shows that higher density may be achieved only if the square 
of the magnetic field is increased proportionally. Even at these large field strengths, 
the Lawson criterion is satisfied, but with a required confinement time of nearly 1 
hour. 

Though most often viewed as a density limit, the Brillouin limit is a statement of 
the fact that the inward j x B force must balance the outward driving forces (cen- 
trifugal, electrostatic, pressure gradient). For plasmas that do not have a uniform 
density, force balance can be achieved even though local values of n far exceed the 
limit expressed in Eq. (1). In this paper, the simple geometry of the Penning trap is 
retained; the confinement device proposed provides radial confinement through an 
axial magnetic field, and longitudinal confinement electrostatically by end cylindri- 
cal electrodes kept at a potential higher than the plasma's space charge potential. 
The difference is that, unlike in a conventional Penning trap, the axial magnetic 
field is very non-uniform. In addition, the velocity shear in the device is very large 
and the density profile is not monotonically decreasing. These two factors could 
have serious consequences where the stability of the configuration is concerned. 

II    METHODOLOGY 

A highly non-uniform field is created by initially producing a conventional, low- 
density Malmberg-Penning trap plasma, followed by ramping the axial field. For 
example, a uniform density, 107 cm-3 deuterium plasma might be generated at the 
Brillouin limit (here, at B — 0.6 Tesla), after which the field is slowly ramped to 
as high a value as is practical (here, 30 Tesla).  Because the plasma is comprised 

436 



of particles of only one sign of charge, transport losses are very low, i.e., the con- 
ductivity is high. As a result, the ramped field does not penetrate the plasma as 
long as the ramping time is short compared to the magnetic diffusion time. A 
diamagnetic surface current is generated, and, in this example, the ions are accel- 
erated to relativistic velocities, with the magnetic field outside the plasma 50 times 
stronger than inside. This method is distinguished from a theta-pinch approach, 
in which the inward j x B forces compress and heat the plasma. To counteract 
the inward j x B forces, ions are injected along the machine axis to increase the 
density (and mutual electrostatic repulsion) of the target plasma. With only the 
weak magnetic field present within the bulk of the plasma, the ion density inside 
the plasma column greatly exceeds the Brillouin limit and the ions drift outward. 
Ultimately, a balance is established between the outward driving forces (centrifu- 
gal, electrostatic, pressure gradient) and the inward j x B force, and the plasma 
is trapped in a thin current sheet between its own outward electrostatic repulsive 
forces and the confining magnetic field. 

Ill    EQUILIBRIUM MODELING 

To determine the characteristics of such an equilibrium, a relativistic 1-D cold- 
fluid model was used to model the system. Starting with the radial force balance 
equation for a cold macroscopic fluid, 

_m®L = e[Er + ßlBMh (2) 
where 

operating on it with l/rd/dr[r...], and substituting in Ampere's law and Gauss' 
law leads to an equation for the derivative of ß{r) as a function of ß(r), Bz, and 
dBz/dr: 

1 dB,     7?/3| 

(3) 
dße        1 Bz dr 
dr      72/ 

where 

1 + T/9^.(7V> + 2) 

7(r) = 
V^T2 
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This first order ODE is solved using Mathematica with the boundary condition 
ß(r = 0+) = 0. Bz is specified as nearly a step function with penetration depth d0. 
The step is located at the surface (rc = 49cm) of the initial low density plasma: 

B,(r) = ^ ( 1 + Tanh 
+ r0){r - rc) 

2dl 
(4) 

Fusion power is maximized by increasing the ion density to the greatest extent 
possible. To that end, 30 Tesla is chosen for the ramped field to illustrate the 
potential of this approach. An equilibrium calculation using a relativistic 1-D cold- 
fluid model shows that the plasma can be trapped in a hollow, 49-cm diameter, 
0.2-cm thick cylinder, whose density exceeds 4 x 1014 cm""3. The drawback, of 
course, is the very small thickness of the current sheet, resulting in a low plasma 
volume. For this simulation, the radius is maximized so that the resulting plasma 
volume is as large as possible without the local velocity exceeding the speed of light. 
The results indicate that 2 MW of fusion power could be produced in a 100-m long, 
1-m diameter reactor. At 72 m3, the device would be only 4% of the volume of 
1TER, while a device with the same volume as ITER would produce 55 MW. In 
the simulation, the thickness of the shell is set at 2 Larmor radii, i.e, the ramped 
B-field is assumed not to penetrate the highly conducting ion plasma at all. The 
other parameters are: Baz - 300 kG, r0 = 49.0, and da = 1.85 cm. The magnetic 
field in the region of the field transition given in Eq. (4) is shown in Fig. 1. 

Given the magnetic field profile, the velocity profile is uniquely determined. In 
this case, the velocity is relativistic with ß about 0.85. The rotation frequency 
profile, uj(r) = cß/r is determined from the velocity and is shown in Fig. 2. Given 
the velocity profile, the density profile can be readily calculated from Ampere's law: 

< ^ 1       dBz . 
n(r) = Ä^ß(r)-d7- (5) 

The plasma forms a thin cylindrical shell in the region of the magnetic field 
transition, which is shown in Fig. 3. The current density is easily calculated from 
its definition: 

j(r) = n(r)eß(r)c (6) 

The very high current density (several MA/cm2, shown in Fig. 4.), confines the 
plasma through the inward radial j x B force. Given the density profile, the electric 
field is calculated from Gauss' law: 

E(r) = 300 x 106 • 47re- j n(r') r' dr' (7) 

The self electric field generated at the surface of the plasma as calculated from Eq. 
(7). is large (100's of MV/cm). However, there is little charge or field inside the 
plasma shell, as shown in Figs. 3 and 5. 
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FIGURE 1. The magnetic field in the region of the surface of the initial, low-density plasma. 
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FIGURE 2. The rotation frequency profile in the region of the plasma shell. 
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FIGURE 3. The density profile. 
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FIGURE 4. A very high current density provides the confining forces. 
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FIGURE 5. The electric field in the region of the transition. 

IV    INCLUSION OF FINITE TEMPERATURE 

To determine how the inclusion of finite temperature affects the characteristics of 
the cold fluid equilibrium, a relativistic pressure gradient term, 1/nVP, was added 
to the 1-D, cold-fluid model. A simplified model of pressure, with varying density 
but isotropic temperature is included in Eq. (2) by adding T/r d/dr(r/n dn/dr) to 
the right hand side. Similarly, operating on this equation with l/r d/dr [r ...] and 
substituting Ampere's law and Gauss' law as with Eq. (2) produces a second-order 
differential equation giving dB2/dr2 as a function of ß(r), dß(r)/dr, Bz, dBz/dr, 
dB2Jdr2, and d3Bz/dr3: 

d2ße      1  (dß 
dr2 ße \dr 

+ 

+ 

d2Bz 

dr2 

Bz + 
mc 

1   dBz 9B, 

T   l ßa2 dr 

2     dBz 8
3BZ 

(OB, 
V dr 

er 

 cPB. 
dr   dr3 ßr2 

^eßl + 2leße + 

dBz 

Ör 

T 
ßemc2 

dße 
dr (8) 
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At the temperatures considered here (T = 80 keV), the energy associated with 
the pressure gradient is only about 0.3% of the rotational energy of the ions or the 
electrostatic energy associated with the space charge. Consequently, the qualitative 
results of the simulation are nearly identical to the cold fluid case. The peak ion 
density confined with the same field strength is identical to the cold fluid case, but 
there is a small extension in the distribution of ion density towards the center of 
the configuration, as seen in Fig. 6. The rotation frequency profile is steeper at 
48.7 cm than in the cold fluid case, and tapers off more sharply at r >49.0cm. The 
current density and the electric field remain identical to the cold fluid case. 

cm -3 Ion Density 

4-10 

3-10 

2-10 

1-10' 

48.6  4 49   49.2  49.4 
radius <cm> 

FIGURE 6. The ion density including finite temperature effects. 

V A TEST CASE: PROPOSED EXPERIMENT FOR 
THE EDG 

This concept can be easily tested in existing Malmberg-Penning traps. The cold 
fluid equations were solved for electrons as the plasma species and for parameters 
suited to the EDG device at Princeton [4,5]. For a very modest field of .01 Tesla 
and a plasma diameter of 1.8 cm, the rotation frequency is much higher than in 
the pure ion case because of the much lower mass of the electrons. Peak rotation 
frequencies of 8 GHz are modeled as shown in Fig. 7. This rotation corresponds to 
a beta of about 0.45. The electron density is concentrated at the edge, as expected, 
and the peak density is < 8.6 x 10u/cm3. The peak current density is about 1.6 
kA/cm2. The main technical difficulty in performing an experiment in EDG is 
ensuring that the walls of the cylinder do not break down because of field emission. 
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The electric fields, even for this low density, peak at about 90 kV/cm, as shown in 

Fig. 8. 
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FIGURE 7. The rotation frequencies in EDG. 
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FIGURE 8. The electric field in EDG. 
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Nonneutral Plasma Applications 

C. A. Ordonez* 

Department of Physics, University of North Texas, Denton, Texas 76203 

Abstract. Malmberg-Penning traps have had limited uses for applications that require 
high density nonneutral plasma confinement. For such traps, the density is severely 
limited because a magnetic field is used to provide a radially inward force to balance 
both self-electric and centrifugal radially outward forces. A possible way to confine 
higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular 
nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp 
such that radial confinement is provided by an externally produced electric potential 
well while axial confinement is provided by the magnetic field. In addition, a radial 
electric potential profile having a nested-well configuration can be used to simultane- 
ously confine two oppositely signed plasma species (e.g., positrons and antiprotons) 
that overlap. In the work reported, various aspects of using magnetic cusp configura- 
tions and electric nested-well configurations are considered. Plasma confinement with 
these configurations may be useful for obtaining fast antihydrogen recombination and 
trapping rates and for achieving practical fusion power production. 

INTRODUCTION 

Experiments are now being planned for attempts to produce and trap cold anti- 
hydrogen atoms [1,2]. One approach being studied, which involves the use of nested 
electric potential wells, is described in recent review articles [3,4]. Antiprotons and 
positrons are confined to travel along the direction of an externally produced mag- 
netic field. Externally produced nested electric potential wells along the magnetic 
field are used to provide simultaneous confinement of both particle species. Con- 
finement is achieved such that the antiprotons overlap the positrons, which form 
a higher density plasma. A fraction of the recombined antihydrogen atoms are 
produced in a low-magnetic-field-seeking state. Such atoms remain confined within 
the magnetic field, which has a local minimum in strength. 

+)  Electronic Mail: cao@unt.edu 
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A question associated with the above approach is what configuration to use for 
the magnetic field. In the work presented here, a magnetic cusp is considered. The 
prospect of using a magnetic cusp is supported by a recent experimental demon- 
stration of good confinement of a nonneutral plasma in a cusp [5]. A magnetic 
cusp is axisymmetric and, in an Andreoletti-Furth configuration [6], can provide a 
local magnetic minimum in the region where the antiprotons overlap the positrons. 
A magnetic minimum within the overlap region provides a means to initially trap 
newly recombined atoms in highly excited states and to subsequently de-excite the 
atoms by collisions with surrounding plasma particles. 

MAGNETIC CUSP CONFIGURATION 

Figure 1 illustrates a cross section of the coils, magnetic field lines, electrodes, 
and trapped nonneutral plasma for a magnetic cusp. Electrodes for producing 
single-well confinement of a nonneutral plasma are shown in Fig. 1(a) while elec- 
trodes for nested-well confinement are shown in Fig. 1(b). There is azimuthal 
symmetry about the z axis. The different appearance in each set of coils, one set 
located at z > 0 and one set at z < 0, is intended to show that each set carries 
a current in opposition to the other in order to produce a radial magnetic field 
between them. As drawn, the magnetic field lines show no axial component over 
the region where a positive nonneutral annular plasma is trapped. There are six 
disk shaped electrodes. The two electrodes to either side of the plasma have a 
negative applied potential with respect to the other four electrodes. The difference 
in potential between the electrodes produces an electric potential well suitable for 
radially confining the positive annular plasma. The externally produced potential 
well must counteract the self-electric force that tends to expand the plasma in the 
radial direction. For the magnetic field illustrated in Fig. 1(a), the configuration 
should have the interesting property of providing radial compression of a nonneu- 
tral plasma that is introduced along the axis. The compression would occur as a 
result of the radially outward magnetic moment force that acts on the plasma. For a 
magnetic field in an Andreoletti-Furth configuration, the nonneutral plasma can be 
located within a magnetic well such that magnetic and electric wells simultaneously 
provide radial confinement for the annular nonneutral plasma. 

For the configuration illustrated in Fig. 1(a), the radial magnetic field serves to 
keep the plasma from expanding axially. Along the midplane (at z = 0), there is 
no axial electric force acting on the plasma because of left/right symmetry. Hence, 
there will be no azimuthal plasma rotation along the midplane. Away from the 
midplane an axial electric field does exist, which causes an azimuthal ExB rota- 
tion and an associated centrifugal force. Because the axial electric field strength 
increases with increasing distance from the midplane, the plasma must undergo a 
sheared azimuthal flow. Thus, global thermal equilibrium will not be possible. 

A nonneutral plasma confined in the solenoidal magnetic field of a Malmberg- 
Penning trap necessarily produces a radial electric field.   The crossed fields are 
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FIGURE 1. Cross section of the coils and a trapped nonneutral plasma in a magnetic cusp for 
single-well electrodes (a) and nested-well electrodes (b). 

responsible for an azimuthal ExB flow of the plasma. The resulting centrifugal 
force, as well as the radial electric force, must be balanced by a radially inward mag- 
netic vxB force. Requiring force balance for a uniform density cylindrical plasma 
leads to the well known Brillouin density limit. For an annular plasma in a cusp 
magnetic field, the magnetic field only needs to provide an axially inward magnetic 
vxB force to balance an axially outward self-electric force, which approaches zero 
near the midplane. 

A number of previous analyses have explored the possibility of using nonneutral 
plasmas for fusion applications [7,8]. An advantage of a nonneutral ion plasma 
is that there are no energy losses via electrons (e.g., by electron heat conduction, 
bremsstrahlung and cyclotron radiation). Approaches based on magnetically con- 
fining nonneutral fusion plasmas require the ion density to exceed the Brillouin limit 
in order to achieve a practical fusion power density. With a cusp magnetic field 
such as that illustrated in Fig. 1(a), it is conceivable to confine a thin washer-like 
annular nonneutral plasma at a density exceeding the Brillouin density limit. 

ELECTRIC NESTED-WELL CONFIGURATION 

Figure 1(b) shows a set of five nested electrodes that would be suitable for pro- 
ducing a nested electric potential well for trapping oppositely signed plasmas that 
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FIGURE 2. Illustrations of one side of a multiply nested time-dependent potential profile at 
one instant in time. The potential has a sinusoidal time dependence at each axial position such 
that the potential profile looks like a wave packet with a phase velocity directed to the left and 

no group velocity. 

overlap. Use of a nested-well configuration for trapping oppositely signed plasmas 
that overlap is supported by both theory [9-11] and experiment [12]. First, the pos- 
sibility of keeping a positron plasma (with as large a density as possible) overlapped 
by a lower density of antiprotons is considered. One way to maintain a constant 
overlap is to keep the antiproton plasma in a nonequilibrium plasma state referred 
to as an "antishielding" [13,14] state. Schemes using moving potential barriers have 
been studied experimentally [15]. Two examples of a moving-barrier approach are 
illustrated in Fig. 2. A way to visualize the time dependence is as a wave packet 
with zero group velocity and nonzero phase velocity. The phase velocity would be 
directed toward the plasma overlap region (toward z = 0). A simple animation 
with the computer program Mathematica is possible by entering 
f=Exp[-x2]Cos[27r(x-r-i/10)];Do[Plot[f,{xr2.5,2.5},PlotRange->{-l,l}],{i,10}] 
and animating the result. Figure 2(a) shows about ten positron barriers (positive 
<f> regions) and ten antiproton barriers (negative <f> regions). Hundreds of closely 
spaced electrodes would probably be needed to create such a profile. This may 
be possible for a thin washer-like positron plasma. Nevertheless, a moving-barrier 
approach that requires far fewer barriers (and electrodes) is also possible [15]. For 
the profile shown in Fig. 2(a), the positron and antiproton barriers move sequen- 
tially inward and each plasma species alternates extending past the other. For the 
profile shown in Fig. 2(b), the first group of barriers are positron barriers so that 
the positrons are always overlapped by the antiprotons. A nice feature of both 
profiles in Fig. 2 is that the voltage applied to each electrode only needs to change 
sinusoidally with time. 

A possible problem with keeping a plasma in an antishielding state is that the 
plasma temperature can increase [15]. In Ref. [16], an analysis of keeping antipro- 
tons at a density of 5 x 1010 m-3 and temperature of 1 K in an antishielding state 
is presented. The antiprotons are considered to overlap a positron plasma at a 
density of 5 x 1013 m~3 and temperature of 1 K. The time it would take for the 
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antiprotons to relax toward thermal equilibrium, which can be associated with the 
timescale for antiproton heating, is found to be much larger than the timescale for 
the antiprotons to approach a collisional thermal equilibrium with the positrons. 
Consequently, the antiproton temperature will remain about equal to that of the 
positrons. The timescale for the antiprotons to relax toward thermal equilibrium 
is found to be 0.2 s for the parameters considered. This is roughly the timescale 
for positrons in a 5 T field to cool by cyclotron radiation to thermal equilibrium 
with the surrounding structure (see Ref. [17] for a convenient formula). With a 
substantially larger number of positrons than antiprotons, the temperature of the 
positrons and antiprotons should remain relatively unaffected by the antiproton 
heating associated with maintaining the overlap. 

The above considers the possibility of keeping a positron plasma overlapped 
by a lower density of antiprotons. It is possible for the nested-well configuration 
to be designed such that the plasma in the overlap region is neutral [9]. With 
a neutral overlap plasma, a self-electric field will not be produced, which may 
otherwise field ionize newly recombined atoms trapped in highly excited states. 
For a neutral density of 5 x 1010 m~3 and temperature of 1 K, the timescale for 
three-body recombination is 0.1 -1 s (see Ref. [16] for calculation details). Since this 
is close to the timescale for the antiprotons to relax toward thermal equilibrium, 
it is conceivable to use constant electrode potentials, as considered in Refs. [16] 
and [18]. It is interesting to note that als timescale for spontaneous radiative 
recombination would require the density to be about 1016 m-3. 

CONCLUDING REMARKS 

It may be possible to increase the reaction rate (e.g., recombination or fusion) 
for plasmas that are confined, in part, by an externally produced electric potential 
well. The electrode voltages can be oscillated such that an acoustic standing wave 
is driven. This should effectively enhance the reaction rate as a result of the higher 
density compressions that are produced, although the average plasma density is not 
increased. A somewhat similar enhancement is proposed for increasing the fusion 
reactivity in spherical fusion plasma systems based on the periodically oscillating 
plasma sphere (POPS) concept [19]. 

In summary, plasma confinement with magnetic cusp and electric nested- and 
single-well configurations have been considered. For single-well confinement of a 
nonneutral plasma in a magnetic cusp configuration, exceeding the Brillouin limit 
appears possible. Such a configuration may be useful as an approach to fusion 
energy production. For nested-well confinement of overlapping plasmas, a number 
of characteristics of the confinement may make the configuration useful as an ap- 
proach to produce and trap antihydrogen atoms. In a purely radial magnetic field, 
self-compression of a thin positron plasma that is axially loaded along the axis may 
be possible. The high density positron plasma can then be radially confined in an 
electric potential well and the magnetic configuration can be modified to form a 
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magnetic well at the positron plasma. The nested-well configuration can be acti- 
vated and an overlapping antiproton plasma introduced. The high density positron 
plasma can provide for collisional de-excitation of antihydrogen atoms that are 
initially recombined and trapped in highly excited states. Overall, the combined 
magnetic cusp and electric nested-well configuration appears promising as a scheme 
for achieving fast antihydrogen recombination and trapping rates. 
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Abstract. Complete transmission of an electron beam through a cavity is not possible 
if the current exceeds the space-charge limited current. The formation of a virtual cath- 
ode reflects some of the beam electrons and reduces the current transmitted through 
the cavity. Transients in the injected current have been shown to lower the transmit- 
ted current below the value predicted by the electrostatic Child-Langmuir law.1 The 
present work considers the propagation of an electron beam through a nested-well con- 
figuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions 
can be trapped in the electric potential depression of an electron beam. Furthermore, 
the trapped ions can prevent the formation of a virtual cathode for beam currents 
exceeding the space-charge limit. 

INTRODUCTION 

An understanding of electron transport that is space-charge limited (SCL) due 
to virtual cathode formation is important in a variety of fields, including sheath 
research [1,2] and high power microwave sources [3,4]. A virtual cathode is a time- 
dependent phenomenon that occurs when a current larger than the SCL current is 
passed through a region. If a current well below the space-charge limit is injected 
into a drift tube, for example, the axial velocity of the beam particles remains rel- 
atively constant. As the current increases, the greater space-charge density within 

t)  Electronic mail: cao@unt.edu 
*)  Luginsland, J., et al, "Virtual Cathode Formation Due to Electromagnetic Transients", IEEE 
Trans, on Plasma Science, 28(3), 901-904 (1998). 
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FIGURE 1. A nested-well profile (a) and some possible configurations that produce the inner 
well of a nested-well profile (b-e). 

the drift tube decelerates those particles that are just entering the tube. Eventu- 
ally, there is sufficient space-charge within the tube that the decelerated particles 
come to rest and a virtual cathode is formed. As more particles are collected into 
the virtual cathode (i.e., the potential depression where the particles have zero 
axial velocity), the magnitude of the virtual cathode increases, ejecting many of 
the particles from within the potential depression of the virtual cathode. After 
this occurs, the magnitude of the virtual cathode decreases, allowing more parti- 
cles to be transmited until the SCL current is again exceeded. The process is then 
repeated. Thus, the presence of a virtual cathode represents an instability in the 
beam flow, causing the magnitude of the beam current and potential depression 
to oscillate. This oscillation is one mechanism used in vircators to produce high 
power microwaves [3]. 

The present work investigates the transport of an electron beam through a nested 
electric potential well configuration. Nested-well configurations are being studied 
for use in Malmberg-Penning traps [5-8]. The electric potential profile for a nested- 
well configuration is qualitatively illustrated in Fig. 1(a). The increasing potential 
on the left side of the "outer" well accelerates electrons entering from the left. The 
outer well also decelerates the electrons before exiting through the right side. As 
shown in Fig. 1(a), the outer well is nested about the "inner" well. The inner well 
can be created by various methods and is the primary focus of the present study. 
Figure 1(b) illustrates the use of cylindrical electrodes to form the inner well. This 
method is typically employed to form the inner well in nested Malmberg-Penning 
traps [9]. 

There are alternative methods to produce the inner well.  A drift tube with a 

452 



region of increased radius, as shown in Fig. 1(c), is one such configuration. Sim- 
ilar structures are used in backward-wave oscillators, travelling-wave tubes and 
vircators to produce high power microwaves [3]. The larger radius decreases the 
potential and retards the electron beam. With a sufficiently large radius, a virtual 
cathode can occur causing fractional transmission of the injected current. Another 
approach, shown in Fig. 1(d), is applying a spatially varying magnetic field (rep- 
resented by the curved lines) that increases the beam density by constricting the 
beam. Figure 1(e) demonstrates another approach to creating a virtual cathode. 
It has recently been reported that including an inner coaxial electrode enhances 
the SCL current of a hollow beam compared to when the inner electrode is absent 
[10]. Thus, removing a section of the inner electrode from a coaxial drift tube can 
prompt the formation of a virtual cathode. 

The present work investigates the effects of plasma pre-filling on the potential 
depression of an electron beam near the SCL current. The particular configuration 
considered is shown in Fig. 1(c). It will be shown that the plasma-filled device 
can accomodate a larger current than when the device is not plasma-filled. Fur- 
thermore, the plasma ions "fall" into the electric potential depression created by 
the beam and are effectively trapped within it. Although numerous experiments 
have demonstrated the benefits of plasma-filled microwave sources, only limited 
computer simulations exist [11,12]. 

METHOD 

The 2 x/2 dimensional particle-in-cell (PIC) code OOPIC [13] is used to model the 
physical system shown qualitatively in Fig. 1(c). OOPIC is a fully relativistic code 
that can be run either electrostaticaly or electromagnetically. Only non-relativistic 
parameters are considered and all simulations were run in the electrostatic mode. 
The drift tube is formed from three cylindrically symmetric sections with perfectly 
conducting boundary conditions applied to each section. The narrow sections have 
a 10 mm radius and the wide section has a 20 mm radius. Each section is 50 mm 
long. A monoenergetic, 20 keV electron beam enters at z = 0 with a 9 mm radius, 
time-independent uniform current. An axial magnetic field of 3 T is applied to 
strongly inhibit radial and azimuthal motion. 

The main parameters chosen for each run are the beam current, the plasma 
density and the plasma temperature. Before any plasma is added, a series of 
simulations are performed to determine a beam current slightly less than the space- 
charge limit. Using a current below this prevents the instability associated with 
the formation of a virtual cathode. For the complicated boundary of the drift 
tube, analytically predicting the SCL current is difficult. A rough estimate can be 
determined from the infinite-length approximation.   The SCL current for a solid 
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electric potential [kVJ 

FIGURE 2. Electrostatic potential for a 20 keV, 35 A electron beam entering the geometry 
shown in Fig. 1(c). 

beam of radius r;, in a drift tube of radius rc is given approximately by [10] 

3/2 

'scl ^l + 21n(rc/r6) 

Here, 75 = 1 + K/mc2 is the relativistic mass factor for beam electrons entering 
the drift tube with kinetic energy K and rest mass m. I A — 17 kA is the Alfven 
current. For a 20 keV electron beam with a radius of 9 mm, the SCL current in 
a 10 mm radius drift tube is 59 A and 27 A in a 20 mm radius tube. Although 
this demonstrates that increasing the radius of a drift tube reduces its SCL current, 
these values are only approximate for finite-length tubes and charge densities. 

RESULTS 

For the geometry shown in Fig. 1(c) and described above, injecting a 35 A electron 
beam produces an electric potential depression of approximately -13 keV, as shown 
in Fig. 2. The larger radius section of the drift tube more than doubled the space- 
charge potential of the beam over the value present in the narrow sections. The 
value of 35 A is close enough to the SCL current to significantly depress the potential 
in the wide section, but is low enough to avoid forming a virtual cathode. If a 50 
A beam is injected, a virtual cathode forms which indicates that the SCL current 
of the wide section is less than 50 A. The phase-space plots (axial velocity vs. 
axial position) of the 35 and 50 A beams are shown in Fig. 3. The presence of a 
virtual cathode for the 50 A beam is evident. For comparison, an electromagnetic 
simulation of the 50 A beam was also performed. The phase-space plots showed no 
qualitative differences between the electrostatic and electromagnetic simulations. 

If the device is prefilled with a neutral plasma, the maximum current can be 
increased without producing a virtual cathode. The plasma is composed of electrons 

454 



8.5 

%*^A                    HS 
.. 

>£ä 
1 l£$. 

b3 

£ " '■•V'*-.- .^V:'":-'i" 

V *."**" t•• %*/*■"■ ' 
ä 

•S*'l■'.?'•'■}'.  ■". •',"•" 
■s 
S 

-V/r" 
o                              z /cmy 15 

8.S 

i 
+ 

i.---:.v£v..». .:'.-»>'-:^>-;..*?Sp'- 

^j«s»5saM»««w 

Ü s 
S 

-SS 

••f,r*;.V':\, 

0                                                 Z /«Mi 15 

FIGURE 3. Phase-space (axial velocity vs. axial position) comparison of 35 (left) and 50 A 

(right) beams. The electrons decelerate as they enter the wide section. Each electron in the 35 

A beam exits through the right boundary. However, the formation of a virtual cathode reflects a 

fraction of the 50 A beam. 

■5r<iS":*v*»'»,'-;S~:. 

zlcmj 

FIGURE 4.  Axial phase-space for a 50 A, 20 keV electron beam (top) passing through the 
device with a plasma pre-fill and the remaining plasma ions (bottom). 

and scaled-mass protons (40 x electron mass), and is loaded with a density of 5 x 1015 

m-3 and temperature of 100 eV. The plasma extends the length of the device and 
to a radius of 10 mm. Injection of a 50 A beam (corresponding to a beam density of 
1.5 x 1016 m-3) into the plasma-filled device no longer produces a virtual cathode, 
see Fig. 4. It should be noted from Fig. 4 that the plasma electrons are no longer 
present. As the beam begins travelling through the device, the plasma electrons 
are ejected axially due to the space-charge of the beam. As the space-charge of 
the plasma electrons decreases, the ions "fall" into the potential depression of the 
beam. With the ion space-charge reducing the space-charge of the beam, the device 
can operate with a larger beam current. However, it should be noted that this 
neutralization is not stationary. The ions gradually heat up and eventually "leak" 
out of the potential depression. Once sufficient neutralization is no longer available, 
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a virtual cathode will form when the beam current exceeds the SCL current. 

CONCLUSION 

An electrostatic particle-in-cell simulation has been performed which demon- 
strates ion trapping and space-charge reduction in the potential depression of an 
electron beam. With the ions partially neutralizing the space-charge of the beam, a 
current that exceeds the vacuum space-charge limit could be propagated. Various 
mechanisms that increase the electric potential depression of the beam were dis- 
cussed which can form the "inner well" of a nested-well configuration. The effect 
of trapped ions on virtual cathode formation for a drift tube of varying radius, 
Fig. 1(c) was studied. Quantitative predictions for an increase in the space-charge 
limited current within a varying radius drift tube were reported. 
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Abstract. 7Be is an isotope of beryllium that decays by electron capture to 7Li. 
Because the energy of decay is too small for electron-positron production, electrons 
must be present for 7Be to decay. It is possible to modify the rate of decay by changing 
the effective electron density in the region of the nucleus. As part of our effort to study 
the effect of ionization on the decay rate we will confine a uniformly-ionized non-neutral 
7Be plasma for sufficiently long periods to determine the change in the decay rate as a 
function of ionization state. The 7Be is formed by proton bombardment of a B4C target 
containing 10B. In order to form the plasma the 7Be must be extracted from the B4C 
matrix, ionized, and inserted into the trapping region with as little boron, carbon, or 
lithium contamination in the final plasma as possible. We are currently investigating 
several possible techniques for forming a 7Be plasma. Some of the possibilities are 
evaporation followed by e-beam ionization, laser ablation, and electric discharge. 

INTRODUCTION 

7Be is a radioactive isotope with a half-life of 53.29 days which decays to 7Li 
through electron capture. The decay energy of 0.862 MeV is insufficient to produce 
a positron-electron pair so decay is only possible through electron capture. Of 
these decays 10.7% will produce a 477.6 keV gamma ray. The remainder will not 
produce any detectable products other than the 7Li daughter nucleus. 

Because 7Be only decays by electron capture it is possible to modify the rate of 
decay by modifying the electron density in the vicinity of the nucleus. Several 
groups have recorded measurable changes in the rate of decay. The effects of 
chemical bonding show changes of up to 0.08% in BeF2 [1,2]. BeO at a pressure of 
270 kbar exhibits a change of 0.59% in the decay rate [3]. Ionization of 7Be should 
also modify the rate of decay. It is estimated that removal of the 2s electrons will 
reduce the rate of decay by roughly 3% while removal of one of the Is electrons will 
reduce the rate by approximately 45%. A fully ionized 7Be atom should be stable 
as long as it can't capture an electron from a neighboring atom. 

CP498, Non-Neutral Plasma Physics III, edited by John J. Bollinger, et al. 
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MEASURING THE EFFECT OF IONIZATION 

The ideal device for measuring the effect of ionization on the decay rate of 7Be is 
an ion Malmberg-Penning trap. Such devices are now routinely used to confine ion 
plasmas for periods of weeks. These devices also allow the use of Fourier Transform 
Ion Cyclotron Mass Spectrometry (FT-ICR/MS) to measure the amount of 7Li 
that has been produced in the plasma as a function of time. This would require 
a mass resolution of greater than 8000 - a value that is commonly achievable in 
FT-ICR/MS systems. The alternative to FT-ICR/MS for detecting the decays 
would be to measure the rate at which 477.6 keV gamma rays are produced but 
the geometry of an ion trap will restrict the solid angle of detection to the point 
that it will be very difficult to achieve good statistics. 

We are currently building a device that will confine about 109 ions in a 0.5 T 
magnetic field in a Malmberg-Penning configuration. This will result in a neutral 
decay rate of about 150/second with a rate of decay in a triply-ionized plasma 
of approximately 83/second. The sensitivity of FT-ICR/MS would be adequate to 
detect the presence of 7Li within a few seconds and to make accurate measurements 
within a few hours. 

PRODUCTION OF 7BE 
7Be is produced in the atmosphere by spallation reactions from the interaction of 

cosmic rays with nitrogen and oxygen atoms. It is also produced in the core of the 
sun through a 3He+4He fusion reaction. For laboratory use 7Be is commercially 
available from several sources. However, this 7Be is contaminated with significant 
amounts of 7Li due to processing and shipping delays making detection of small 
changes in the decay rate more difficult. Removal of the trace 7Li is not possible 
because of the very small mass difference between the two isotopes. A more pure 
sample of 7Be can be produced in the laboratory by proton bombardment of 10B 
through the reaction 

10B(p,a)7Be. 

The rate for this reaction is significant for proton energies above about 250 keV. We 
are using a 400 keV van de Graaff accelerator to bombard a target of 10B-enriched 
B4C [4] and produce 7Be. Because of the presence of UB and 12C in this target 
there are four other possible reactions at this energy: 

wB(p,i)nC^nB + ß+ + ve 
uB{p,a)8Be-> 2a 

uB{p,2a)4He 
12C(p,-y)13N -> 13C + ß+ + ue. 

The cross-sections for these reactions are all significantly smaller than that for the 
production of 7Be. The two /?-decay reactions are relatively fast (half lives of 20.39 
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FIGURE 1. The predicted rate of deposition of 7Be as a function of depth in the B4C target 
for 100 /xA of 300 keV protons. 

minutes and 9.965 minutes respectively) and the two a-decay reactions are almost 
instantaneous. The resulting products of all four reactions will not be difficult to 
remove from the plasma during the formation and confinement phases. As can be 
seen in figure 1, the majority of the resulting 7Be will be deposited within about 
1.5 /x of the surface of the target with about half of it within 0.35 ß of the surface. 
At a proton energy of 300 keV we also found that about 7% of the 7Be is ejected 
from the front of the target and deposited on the surrounding surfaces. This is 
about twice as much as we expected from the recoil of energetic 7Be atoms. It may 
be enhanced by local heating of the target by the proton beam causing some of the 
beryllium to evaporate. 

EXTRACTION OF 7BE 

Several methods of extracting the 7Be from the B4C target have been proposed, 
including thermal evaporation, e-beam evaporation, sputtering, electrical discharge, 
and laser ablation. The primary difficulty is that the beryllium constitutes an 
impurity in the target at a level of roughly 1 part in 108. At present we have 
only been able to test extraction using thermal evaporation. The B4C target was 
placed in a loop of tungsten wire and heated for about 30 minutes. The stainless 
steel plate that was placed above the target to catch any evaporated 7Be showed 
no trace of radioactivity when checked for 477 keV gamma rays but the activity of 
the target itself was decreased by about 25% indicating that some of the beryllium 
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was evaporated out of the target but it either did not come out of the target in the 
expected direction or it did not stick to the stainless steel plate. It is not known 
if the beryllium came out of the target slowly over the 30 minutes or if it all came 
out in a short period at the start. 

CONCLUSION 

It is clear that the production of 7Be is well understood. From our experience with 
thermal evaporation it appears that this method of extracting the 7Be is probably 
too inefficient and too slow to allow us to reliably form and confine a beryllium 
plasma. It is probable that e-beam evaporation and sputtering will suffer from 
the same difficulties as thermal evaporation. Laser ablation of the surface of the 
target appears at this point to offer the most promise in achieving a reliable plasma 
formation for the population of the ion trap. 
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Abstract. This paper summarizes a fast numerical technique for solving Poisson's 
equation in an axisymmetric Malmberg-Penning trap. The method assumes the charge 
density qn(r, z) and boundary potentials <j>(r = Rw,z) are specified, and solves for the 
electrostatic potential (j>{r, z) within the cylinder. The solution of Poisson's equation 
is often an important step in the numerical reconstruction of the nonneutral plasma 
density profile n(r, z) from the axially integrated measurements of the charge density 
profile, Q(r) = qAh J dz n(r, z), where q is the charge and Ah is the effective area of 
the collimator hole. 

I    INTRODUCTION 

In nonneutral plasma experiments in a Malmberg-Penning trap [1-5], the den- 
sity diagnostic typically measures an axially integrated charge density profile, 
Q(r) = qAh J dz n(r, z), where q is the charge (q = —e for a pure electron plasma), 
Ah. is the effective area of the collimator hole, and n(r, z) is the plasma density 
profile prior to dumping the plasma onto the collimating plate. From the measured 
profiles for Q(r), the density profile n(r, z) is reconstructed numerically by assum- 
ing that the plasma is in a state of local thermal equilibrium along magnetic field 
lines with density profile n(r, z) of the form 

n(r, z) oc exp[-q4>(r, z)/kBT}. (1) 

Here, 4>(r,z) is the electrostatic potential, kß is Boltzmann's constant, and T — 
const, is the plasma temperature. The process of reconstructing the density profile 
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FIGURE 1. Trap geometry and illustrative boundary conditions for which Poisson's equation 

is solved numerically. 

n(r, z) from the measured profiles for Q(r) is iterative, and requires solving Poisson's 
equation 

V2(jf)(r, z) = —ATcqn(r,z) (2) 

for the electrostatic potential </>(r,z), given an initial input for the density profile 
n(r, z), and the boundary conditions satisfied by the potential. Using the calculated 
potential, a new approximation to the density profile is obtained that is closer to 
satisfying Eqs. (1) and (2) self-consistently. This process is repeated until a density 
profile is found which satisfies Eqs. (1) and (2) to some prescribed level of accuracy. 

Because each step of the iterative process requires solving Poisson's equation (2) 
for a prescribed density profile n(r, z), a fast method of solving Poisson's equation 
is required. A direct method (as opposed to an iterative technique) of numerically 
solving Poisson's equation (2) in cylindrical (r, z) coordinates has previously been 
described [6]. However, that description [6] requires a prescription of the potential 
on axis (r = 0) and at some radius r — Rw. In the Electron Diffusion Gauge (EDG) 
device [1-3], the potential on-axis is not known a priori. In this paper, a direct 
method for solving Poisson's equation in cylindrical coordinates [1] is described, 
which extends previous work [6] to allow an unknown potential on-axis. The Poisson 
solver is then benchmarked against a few analytically-solvable cases. 

II    NUMERICAL SOLUTION TO POISSON'S 
EQUATION 

The trap geometry and illustrative boundary conditions for which Poisson's equa- 
tion is solved numerically is shown in Fig. 1. The region of interest is cylindrical, 
with wall radius Rw and total axial length L. The potential <j>(r, z) is assumed to 
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be specified at radius Rw, while at the axial boundaries (z = 0, L) the derivative is 
specified, with 84>/dz - 0. This axial boundary condition is equivalent to assuming 
that the system is axially periodic about z — 0 and z — L. 

For a cylindrically symmetric trap (d/dO = 0), Poisson's equation (2) can be 
expressed as 

av   i9^   &<t>     A tos 
or2      r or      Oz* 

where </>(r,2) is the electrostatic potential, and n(r,z) is the prescribed density 
profile. To solve this equation numerically, we consider the (r, z) plane to be covered 
by a uniform mesh with NR + 1 and Nz elements, and constant spacing Ar and A2 

in the r- and z-directions, where 

z = (t + -)-A„     t = 0, 1,...,NZ-1, 

r = j-Ar,     i = 0, l,...,iVR. (4) 

Here, A2 = L/Nz and Ar = RW/NR, L is the axial length of the region of interest, 
and Rw is the wall radius, where the boundary potential <j>(r .= Rw,z) is assumed 
to be specified. 

A cosine transform is applied by expressing <f>(r, z) as 

^^) = J;E'^(r)cos(^fc)- (5) 

Here, the 'prime' on the summation means that the k = 0 term has a coefficient of 
1/2. Substituting into Poisson's equation (3) yields 

Q + vt-hit)**-*-** (6) 

where the density profile n(r,z) has been transformed similarly to Eq. (5). The 
cosine transform in Eq. (5) uses cosine functions only as a complete set of basis func- 
tions in the interval from 0 to L, and results in a potential that satisfies d<f>/dz = 0 
at the axial boundaries (z = 0, L). These are reasonable boundary conditions for 
the application of interest here. 

Next, Eq. (6) is expressed in a finite-difference form. For the region between the 
trap axis and the trap wall (l<j<NR- 1), Eq. (6) becomes 

4>k,j+\ ~ 2<f>k,j + <t>k,j-i   .  4>k,j+i ~ 4>k,j-i 
2JA2 

'nk\ 
Al \NZ) 

1   /nk\' 
lk,j = -^qnk,j      (1 < j < NR - 1). 

(7) 
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Collecting terms, it is clear that the potential at each radial location j is related to 
the potential at neighboring points j ± 1 by the expression 

°k,j 2 + ^(^2 

A2 \Nz hj-i i1-^;)- &.i+i f1 + Yj ) = 4,r9Ar"*j-   (8) 

To simplify notation, the following quantities are introduced: 

SkJ   =   47rgA?ntii,   A,   =   2 + f|(^|)2, 
(9) 

Equation (8) can then be expressed as 

-u4>kj-i + *k4>k,j - ßj4>k,j+x = Sktj    (i<j<NR- l) (10) 

which corresponds to a set of NR — 1 equations relating the potential at each radial 
location to the neighboring potential. If the potential at the radial boundary <i>k,NR 

is specified, there are NR unknown potential coefficients. 
An additional equation is thus needed to solve for the NR unknown potential 

coefficients. This equation can be found by utilizing the assumed axisymmetry of 
the density and potential profiles, which leads to the result 

<fo,+i = 4>k,-\- (11) 

Equation (11) is equivalent to the axial boundary condition d(f>/dr\r=0 — 0. 
Nonetheless, Eq. (11) cannot be used until a finite-difference form of Poisson's 
equation is found which is valid for j = 0 (r = 0). We note that Eqs. (7) and (8) 
are not valid for j = 0 (r = 0). To find such an expression, Poisson's equation (6) 
is rewritten in the limit as r —» 0, i.e., 

!S5 \ft3- + r-fr  - Äf \WZ)   *" = -4nqnk) ■ (12) 

Using L'Hospital's rule, the second term in this equation, which becomes indeter- 
minate at r = 0, can be expressed as 

lim-/ = -4. 13 
r->o r or      or1 v    ' 

Therefore, in the limit as r -$■ 0, the cosine-transformed Poisson's equation (12) 
becomes 

B2Sk       1   /xlc^2 

dr2      A2
Z \NZ 

— 1   <f>k = -Aitqnk, (14) 
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^4>k,+l — 2<^>fc,0 + 4>k,-l 

A? 
(15) 

and the finite-difference form, which is valid only for j = 0, becomes 

h (£) k°=~4irqükfl' 
where j = 0 has been substituted. Finally, the axial boundary condition given by 
Eq. (11) can be substituted into Eq. (15). This yields 

(2 + \k)fafl - Hk,i = Sk<o, (16) 

where use has been made of Eq. (9). 
Taken together, Eqs. (10) and (16) represent NR equations which can be used 

to determine the NR unknowns, <j>kfi through (j>k,NR-i- It is instructive to write the 
complete set of equations in the matrix form 

2 + Afc 

-7i 

-4      0 

-lNR-2 
0 -INR-I 

ONR- 

9k,0 

4>k,l 

h,NR-2 

t>k,NR-l_ 

Skfl 

Sk.i 

(17) 
Sk,NR-2 

.Sk,NR-l + ßNR-l<f>k,NR. 

This tridiagonal system of equations can be solved rapidly in ö(Mn) operations, 
and the solution can be encoded very concisely [7]. This process is repeated for each 
value of k, and the various transformed potentials ^ are substituted into Eq. (5) 
to determine the desired electrostatic potential <fi(r,z). 

A Poisson solver based on Eq. (17) has been developed [1] and benchmarked 
against a few analytically-solvable cases. The first case is that of constant charge 
density qh and constant wall potential <j)(Rw). The analytical solution (in MKS 
units) is 

(j>{r) = cj>{Rn +£(Ä--! (18) 

The potential at the wall is chosen to be <f>(Rw) = 0, the charge density is 
qh = 1 Coulomb/m3, and the wall radius is Rw = 0.01 m. Substituting these 
values into Eq. (18) gives 

<f>{r) = 2.824 • 1010(10"4 - r2)  Volts. (19) 

Figure 2 shows a radial plot of the potential <f>(r) in Eq. (19). The error A^ in the 
potential calculated using the Poisson solver is normalized to the potential (<f>0) on 
axis (r=0). Using only thirty-two radial grid points, the error in the numerically- 
calculated potential is found to be less than one part in 105. 
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FIGURE 2.   Plot showing the radial potential distribution for a uniform density column of 

charged particles, used for benchmarking the numerical Poisson solver. The error in the potential 

calculated using the Poisson solver, normalized to the potential (4>0) at r = 0), is found to be less 

than one part in 105 using 32 radial gridpoints. 
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FIGURE 3. Plot of the vacuum potential profile <f>(r, z) within a cylinder with a sinusoidal wall 

potential given by Vo COS(2JTZ/L). The length of the cylinder L is chosen to be four times the 

cylinder radius Rw, and the amplitude of the sinusoidal wall potential is Vo = 1 V. 
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FIGURE 4.  The error in the computed potential is plotted as a function of the number of 

radial grid points. Initially, the error decreases proportional to the square of the number of grid 

points, as expected for errors due to the finite-difference approximation.  Eventually, round-off 

error becomes dominant, and the error increases with increasing numbers of grid points. 

The second example is that of a vacuum potential (zero plasma charge density) 
with a sinusoidal wall potential Vocos(2nz/L). The analytical solution to Poisson's 
equation is given by 

</>(r, z) 
Vo 

I0(2TTRW/L) 
COS(2TT z/L)I0(2nr/L), (20) 

where IQ(X) is the modified Bessel function of the first kind of order zero. Figure 
3 shows a plot of the potential <f>(r, z) given by Eq. (20) for Vb = 1 V and axial 
length L = ARW. The difference between the analytical solution and the solution 
obtained with the Poisson solver using 32 radial x 32 axial grid points has been 
calculated. The maximum error in the numerically calculated potential is found to 
be approximately 8 x 10~5 V, whereas the actual potential variation is ±1 V. 

The maximum error in the numerically-calculated potential 4>(r, z) is plotted as 
a function of the number of radial grid points in Fig. 4, assuming 32 axial grid 
points. This error is calculated using the vacuum potential test case. The error 
is observed to decrease initially as the square of the number of radial grid points 
used. This is likely due to the error involved in the finite-difference approximation 
of the derivatives, because the first- and second-derivatives both have errors that 
are dependent on the square of the grid spacing [8], i.e., 
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/'(so) = 2x[/(*o + A) - /(*„ - A)] - ^/(3)(£), 

/"(so) = ^[f(xo - A) - 2/(z0) + /(*„ + A)] - ^/(4)(0- 

(21) 

Eventually, at small enough grid spacing A, the error becomes dominated by round- 
off error, which becomes larger with an increasing number of grid points. 

Ill    CONCLUSIONS 

In conclusion, a Poisson solver has been developed for an azimuthally symmetric 
cylindrical Malmberg-Penning trap. The solver computes the potential 4>{r,z), 
given the charge density distribution n(r,z), and the potential distribution on 
the radial boundary, 4>(Rw,z). The solver has been benchmarked against a few 
analytically-solvable cases, and good agreement has been obtained. For the Elec- 
tron Diffusion Gauge (EDG) experiment [1-3], this Poisson solver is an important 
tool in reconstructing the confined plasma density profile. 
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Abstract. As the basic ingredient for calculating the energy loss of ions in magne- 
tized electron plasmas we investigate binary ion-electron collisions in a magnetic field 
by a classical trajectory Monte-Carlo type numerical treatment. We discuss results 
concerning mainly the nonlinear, strong coupling regime at low relative velocities and, 
in particular, the case of an ion motion transversal to the magnetic field lines. 

INTRODUCTION 

The transport properties of plasmas in an external magnetic field still raise many 
questions, as e.g. the energy loss of a heavy ion in a magnetized electron plasma 
which represents the basic process for electron cooling in heavy ion storage rings. 
Although electron cooling is now a well established method a lot of observations are 
not yet fully understood, basically because only approximative descriptions of ion 
stopping by magnetized electrons are available [1]. Such approximations are known 
to fail in a nonlinear regime occurring for highly charged, slow ions. For nonmag- 
netized electron plasmas the nonlinear stopping of heavy ions has been extensively 
investigated (see Ref. [2]) using numerical simulations as an essential tool. These 
studies verified particularly that the theoretical description of ion stopping can be 
extended into a moderate nonlinear regime by a specific combination of the linear 
response approach and the widely used binary collision model. The basic idea is 
to map the true ion-electron interaction which includes all the many-body effects 
responsible for dynamic screening and the excitation of plasma waves (wake field) 
into an effective, spherical symmetric interaction e.g. of the form 

Vei(r)  = -/^-exp(~). (1) 
47re0 r A 

Here the screening parameter X(V) may depend on the ion velocity V. It is de- 
termined from the linear response treatment which describes the dynamic target 
polarization in a moderate nonlinear regime still properly, although it fails to pre- 
dict the stopping itself correctly, see [2] for details. Once the effective ion-electron 
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interaction (1) is given the needed transport cross section for binary collision can be 
calculated exactly, i.e. without any further approximations. This point is crucial 
for the success of the whole scheme. Here, we claim that this improved description 
should apply as well for magnetized electron targets which requires: (a) a deter- 
mination of the effective interaction, i.e. A(V), from linear response including the 
magnetic field and a possible anisotropic velocity distribution of the electrons via 
the corresponding proper dielectric function; (b) a calculation of the energy and 
momentum transfer in binary ion-electron collisions in a homogeneous magnetic 
field. While work on the first topic is in progress we assume here that A and thus 
Vei(r) Eq. (1) are known and focus on the binary ion-electron collisions. 

ION-ELECTRON COLLISIONS AT B = Be z 

In the nonmagnetic case the transport cross section for the momentum transfer 
is a function only of the ion-electron relative velocity. With magnetic field addi- 
tional dependencies show up like the strength of the magnetic field, the ratio of 
transversal and longitudinal velocities etc.. This makes even binary collisions a 
rather exhausting and challenging problem. While e.g. electron-electron collisions 
still separate in a centre-of-mass and a relative motion at B / 0, the centre-of-mass 
motion there couples to the relative motion for ion-electron collisions. To simplify 
the situation we restrict us to parameter regimes where an entirely classical treat- 
ment of the collision process is applicable and let the ion mass go to infinity after 
a transformation to centre-of-mass and relative (rr,vr) coordinates. The resulting 
classical equations of motion take then the form 

A A 
^r> = vr,        -mvr = -Vr,Vd(|rr|)  - e (vr x B)  - e (V x B),        (2) 

where the ion or centre-of-mass velocity V has a given constant value and the 
reduced mass equals the electron mass m. Now, the homogeneous magnetic field 
B is chosen as B = Bez and the ion velocity as V = (Vx,0,Vz). Eqs. (2) can be 
put in a dimensionless form containing only the two parameters Z/\Z\ and B/B0 

by scaling all lengths in units of the screening length A and all velocities in a 
characteristic velocity vc, where B0 and vc are defined through 

mvc  _   (\Z\m\1/2 (  \Z\#  V'2 

Here mv% equals the potential energy of the electron in the Coulomb field of the 
ion at a distance A. Strong coupling is expected for kinetic energies of the rela- 
tive motion around TUVQ and smaller where the interaction dominates the collision 
process rather than the kinetic energy. 

The geometry for the ion-electron motion before collision is sketched in Fig. 1 
both in the lab-frame and the relative system where the initial velocity is vr(0)  = 
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FIGURE 1. Collision geometry in the different frames 

( v°x , v°y , v°z) = (y°± cos <p - Vx, v°x sin <p, vf\ - Vz). Here <p is the initial phase of 

the spiral motion of the electron. The vector gr = (-14 ,0, v°rz) in Fig. 1 denotes 
the velocity of the guiding centre in the relative frame and allows to define an 
impact parameter b with respect to a plane perpendicular to gr and an incoming 
current density j — ne|gr| both needed to determine the stopping power from the 
energy loss per time. For example, the stopping power in direction of the ion motion 
results from the energy change AE in individual binary collisions by the averaging 

F = F-v = ^ = ^/rfVK,<)|gr|/d2&/o
2,rgA£;(vr,v1^). (4) 

Here f(vpv°x) represents the velocity distribution of the electron plasma. For a 
deeper understanding of ion stopping by magnetized electrons it may be, however, 
more advantageous to study first the averaged relative changes of energy and mo- 
mentum which can be expressed by the following partial transport cross sections 
(here scaled in 47rA2) 

d2b   f dip 

m\v 0 12 

aAEr,ll(*V°zX,T4)=  ^Tp 

j£?f%**^V~™ 4TTA
2 

d2b 

J£fJ%****t"*-v«™ 4TTA
2 

d2b   r dip 

47rA2i 2n J^APM, >l,Vt,b,tp). (5) 

The  relative  changes   in  the  lab-frame  of the  transversal   (_L   B)   energy 
-AEJ(mv2

c/2) 

-AEr,||/(mv&/2) 

[14 + v'rx]2 + v'ly - [v°±]
2, the longitudinal relative energy 

v'2z - [VrZ]2 and the longitudinal momentum -APz/mvc = 
[Vz + v'rz] - [Vz + v°TZ] = v'TZ - v°rz sum up to AE = AEL + AE^ + 2VZAPZ ap- 
pearing in Eq. (4). Splitting the total energy change in these partial contributions 
provides, however, further insight in the complex collision process. 
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FIGURE 2. Normalized averaged changes -(AE±) - -[v°±]

2a&E± (top) and -(AP-) = 
-■U°2CTAP2 (centre) for ion-electron collisions with parallel ion motion Vx = 0 and — (AE±), 
-(AP2) (bottom) for electron-electron collisions for different u^ and magnetic fields B/B0. 
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The changes of energy and momentum are calculated by a numerical integra- 
tion of the electron trajectories through the interaction zone [3] for given initial 
conditions. The integration over the impact parameter b and the initial phase <p 
occurring in Eqs. (5) are performed by a Monte-Carlo method. The number of 
computed trajectories is adjusted by monitoring the convergence of the averaging 
procedure. 

In the particular case of Vx = 0 the ion motion parallel to B can be completely 
transformed into vrz. Here energy conservation yields AE±_ = —AEri\\ and only 
the scaled values ~{AE±) = -[v0

±}
2aABx and -(APZ) = -v°zaAPt are of interest. 

They are shown in Fig. 2 as functions of [v°z]2 for different velocities of the cy- 
clotron motion v°± and varying magnetic fields B/B0- Positive values of -(AE±) 
correspond to an increase of the energy in the cyclotron motion and a blowing up 
of the spirals during the collision in the average. This is observed for the low initial 
v°, = 0.2 which is always small compared to v°z (Fig. 2, left top). An oppositely 
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FIGURE 3. Normalized averaged changes -(AJSj.) = -[«5.]2 «TABJ. (top) and -(APZ) = 
-t,JzffAPi (bottom) for ion-electron collisions with varying transversal ion motion Vx at different 

B/Bo and v°± = 6. 
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directed flow of energy related to a shrinking of the spirals occurs for the higher 
v°± = 5 when v% < v\ (right top). The same behaviour was also found for other 
v°±. In all cases, however, the absolute values of [UIJVAEL are strongly reduced 
with increasing magnetic field B. These features are recovered for the momentum 
change ~{APZ) — —VJ?0<7APZ (centre), where positive values indicate a deceleration 
of the electron motion parallel to B and negative ones an acceleration. 

For comparison, results for repulsive electron-electron collisions are shown in the 
lower part of Fig. 2. Again, an increase of B yields a strong suppression of the 
energy transfer as it has been already documented e.g. in investigations on the 
equilibration of transversal and longitudinal temperatures in a magnetized electron 
plasma [4]. The momentum transfer (AP2) (right bottom) shows, however, a quite 
different behaviour than in the ion-electron case, mainly a weaker dependence on 
B and a convergence towards an always positive value for strong magnetic fields. 
This is certainly related to the repulsive force. 

In the attractive case of ion-electron collisions again considerably different results 
are found for transversal ion motion Vx ^ 0. Here a net energy transfer, i.e. 
A£j_ ^ — AEVJI, results in a stopping power in transversal direction. In Fig. 3 we 
present the calculated averages (AEL), {APZ) for B/B0 = 6 and 30 and a initial 
transversal velocity u^ = 6. In the nonlinear regime which is reached for small 
[v°z]2 the results strongly depend on the transversal ion motion Vx. Here the energy 
transfer {AEx) can be much larger than for Vx = 0 and an interesting behaviour 
is observed for the change of transversal momentum — (APZ) (Fig. 3, bottom). 
There already a small Vx turns the average acceleration of electrons at low [wj?2]2 

into a deceleration which initially increases with Vx, then reaches a maximum and 
decreases again at larger transversal ion motion. These results indicate that special 
attention has to be paid to the actual ion motion when calculating the energy 
loss related to electron cooling in storage rings where the low velocity regime is 
of particular importance. Similar observations on this role of the transversal ion 
motion in connection with stopping in magnetized electrons has already been made 
in PIC-simulations on this subject [5]. Work to investigate this in more detail is in 
progress. 
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